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ABSTRACT 

Mobile phone distractions among construction labourers pose significant productivity 

challenges. This study presents a YOLOv11-s-based model to detect and classify 
construction labourers who use mobile phones during work. The system was trained 

using a person dataset, a helmet dataset and a mobile phone dataset, obtained from an 

online database and custom images collected from Sri Lankan construction sites. The 
proposed system followed a four-stage approach, beginning with person detection, 

followed by helmet detection and classification. Then, through image preprocessing, the 

model analysed the helmet colour using histogram analysis and the Hue Saturation 
Value colour scale to detect labourers with yellow helmets. Subsequently, the 

performance evaluation metrics, such as precision-recall curve, mAP@0.5 and 

inference time, indicate that the trained model performs better on the testing data in 

detecting construction labourers who are using mobile phones during work. Finally, 

mobile phone detection is carried out. Images from Sri Lankan construction sites were 
used for deployment validation and to check for model overfitting. The system can be 

further developed by using motion detection through IoT to detect the continuous use of 
mobile phones through timeframe analysis. This study contributes to improving 

workplace productivity through the automated detection of distractions in construction. 

Keywords: Construction; Helmet Detection; Mobile Phone Detection; Productivity; 

Yolov11, 

1. INTRODUCTION  

Construction labour productivity is defined as the amount of work completed per unit of 

labour input, typically measured in output per labour hour (Assaad et al., 2023). 

According to Hamza et al. (2022), it is a crucial factor in the construction industry, as it 

directly influences project efficiency and cost-effectiveness. However, distractions on-

site can decrease productivity and lead to delays, inefficiencies, and increased operational 

costs. Distractions can arise from various sources (Ke et al., 2021), one of which is mobile 

phone usage on construction sites. Although mobile phones facilitate instant 
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communication and coordination (Hasan et al., 2019), their unregulated use can become 

a major source of distraction due to the constant flow of notifications, messages and calls, 

which can easily become a source of distraction (Merchán et al., 2024).  

To mitigate these issues, tighter supervision of labourers' mobile phone usage on 

construction sites is necessary. According to Hamza et al. (2022), supervision 

significantly enhances productivity. However, Raoofi et al. (2024) found that traditional 

supervision methods in construction can be time-consuming and costly. A case study 

conducted by Kim et al. (2023) in Korea highlighted that digital technologies can 

significantly enhance the efficiency of construction supervision. Automated systems 

utilising cameras and computer vision can detect, localise and classify mobile phones. 

The use of Artificial Intelligence (AI) in construction management can improve 

efficiency and reduce costs (Ruchit & Olivia, 2024). 

One effective way to distinguish construction labourers from other personnel is through 

helmet colour detection. Studies have shown the feasibility of computer vision models in 

detecting labourers wearing construction helmets (Cheng, 2024; Hayat & Morgado-Dias, 

2022; Li et al., 2023). Merchán et al. (2024) conducted a study to detect the use of mobile 

phones through an inertial measurement unit for safety monitoring. However, this 

approach relied on sensors embedded in helmets focusing on detections in indoor 

scenarios. Therefore, there is still a gap between the detection of mobile phone use in the 

external environment of the construction site.  

This paper introduces a mobile phone detection model that uses the YOLOv11-s 

architecture to enhance productivity on construction sites. The model achieves this by (1) 

detecting persons, (2) detecting and classifying safety helmets (3) detecting the colour of 

helmets to differentiate labourers with yellow helmets, and (4) detecting their use of 

mobile phones. By integrating computer vision into construction supervision, this 

approach provides a solution to enhance productivity at construction sites. The paper is 

structured as follows. First, it provides a comprehensive review of labour productivity 

and computer vision for enhancing productivity. Next, the research method, including 

data collection and analysis techniques, is elaborated. This is followed by the findings 

and conclusions. 

2. LITERATURE REVIEW 

2.1 SIGNIFICANCE OF LABOUR PRODUCTIVITY ON CONSTRUCTION SITES 

Construction productivity plays a vital role in the growth of a nation's economy (Naoum, 

2016). Productivity in construction refers to the maximisation of output while optimising 

input utilisation, ensuring efficiency and cost-effectiveness (Hamza et al., 2022). 

According to Muqeem et al. (2011), construction labour is the most crucial resource in 

the industry, directly impacting overall construction productivity. However, low 

productivity levels remain one of the major challenges faced by the construction sector, 

leading to delays, increased costs, and inefficiencies. Dixit et al. (2019) further 

emphasised that low productivity can create inflationary pressure on a nation's economy, 

affecting overall economic stability. 

One of the contributors to reduced labour productivity is mobile phone distractions 

among labourers (Sattineni & Schmidt, 2015). Labourers who divide their attention 

between critical tasks and mobile phone use are more likely to exhibit decreased 

efficiency, leading to lower work output and increased errors (Merchán et al., 2024). 



Detection of mobile phone use by labourers on construction sites using YOLOv11-s 

Proceedings The 13th World Construction Symposium | August 2025  563 

Traditional supervision methods for maintaining productivity rely on manual monitoring, 

which is often time-consuming and costly (Raoofi et al., 2024). As a result, researchers 

are increasingly exploring technology-driven solutions to enhance productivity and 

automate site supervision (Adamu et al., 2024; Bai et al., 2023; Yuan et al., 2023). 

2.2 COMPUTER VISION FOR ENHANCING PRODUCTIVITY AT 

CONSTRUCTION SITES 

With the rapid growth of Artificial Intelligence (AI), computer vision has emerged as a 

significant tool for information perception and automated detection in various 

applications. In construction safety, helmet detection has been significantly enhanced 

using computer vision algorithms, enabling real-time monitoring of compliance on 

construction sites (Cheng, 2024). Numerous studies have utilised Convolutional Neural 

Networks (CNNs) to detect helmet usage, improving labour productivity and site 

supervision. Fang et al. (2018), utilised faster regional-based CNN to detect helmet use 

on construction sites, while Wu et al. (2019) and Han and Zeng (2022) developed deep 

learning-based systems that detected helmet usage and classified its colour.   

CNN-based object detection models are categorised into single-stage and multi-stage 

detectors (Sumit et al., 2020) . Single-stage detectors, such as You Only Look Once 

(YOLO), perform object classification and localisation in a single step, making them 

significantly faster in object detection (Pham et al., 2020). In contrast, multi-stage 

detectors, such as Faster R-CNN and Mask R-CNN, use a two-step process, which results 

in higher accuracy but slower processing (Sumit et al., 2020)The primary advantage of 

single-stage detectors is their real-time capability, making them ideal for applications that 

require fast object detection. Therefore, YOLO models are an optimal choice for 

automated construction site supervision, which prioritises speed while maintaining a 

satisfactory level of accuracy. 

The architecture of YOLO consists of three major components: (1) Backbone, (2) Neck, 

and (3) Head (He et al., 2024). The backbone is responsible for feature extraction within 

an image, identifying key visual patterns necessary for object detection. The neck 

enhances multi-scale feature fusion, enabling the model to detect objects of different sizes 

with improved accuracy. Finally, the head is responsible for final object classification, 

bounding box regression and refining detection accuracy (Alif, 2024). 

2.3 YOLOV11 ARCHITECTURE 

Among the YOLO series, YOLOv11 represents the latest iteration, offering significant 

improvements in real-time object detection (Khanam & Hussain, 2024). It incorporates a 

range of architectural enhancements designed to improve speed, accuracy, and 

adaptability. Lin (2024) proposed a YOLOv8-based algorithm designed to enhance 

helmet detection in complex backgrounds, including instances with small or distant 

objects. Furthermore, other studies have also used various YOLO models for safety 

helmet detection on construction sites (Wan et al., 2024; Yang et al., 2024). According to 

He et al. (2024), YOLOv11 demonstrated the highest accuracy and recall rate compared 

to previous YOLO versions. A comparison of key performance metrics of the YOLO 

series is provided in Table 1.  
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Table 1: Comparison of YOLO series 

Source: (He et al. 2024) 

Method mAP/% Precision/% Recall/% 

YOLOv5 54.4 64.5 62.6 

YOLOv8 55.5 71.1 60.9 

YOLOv9 43.8 55.2 50.7 

YOLOv10 48.0 79.3 56.2 

YOLOv11 57.2 66.4 64.8 

The YOLOv11 series includes multiple variants designed for different application 

requirements. These variants, such as YOLOv11-n (nano), YOLOv11-s (small), 

YOLOv11-m (medium), YOLOv11-I (intermediate), and YOLOv11-x (extreme), offer a 

balance between accuracy, speed, and computational efficiency (Kishor, 2024). 

YOLOv11-s is particularly suitable for medium-scale applications, providing a balance 

between detection speed and accuracy. 

2.4 SIGNIFICANCE OF THE STUDY 

This study introduces a computer vision system using YOLOv11-s architecture to detect 

mobile phone use among construction labourers, which is a critical yet underexplored 

factor in construction productivity. Some studies have focused on helmet detection 

(Cheng, 2024; Hayat & Morgado-Dias, 2022) and indoor mobile use using sensors 

(Merchán et al., 2024). However, no studies have integrated person detection, helmet 

detection and mobile phone detection for alternative manual supervision for enhancing 

construction productivity. The system aims to offer a scalable, real-time alternative to 

manual supervision with implications for improving the productivity of labourers at 

construction sites. 

3. METHODOLOGY  

3.1 DATASET COLLECTION 

Three datasets were used to train the model: (1) for person detection, (2) for “helmet” 

referred to as “hard hat” detection and (3) for mobile phone detection. These datasets 

were obtained from an online platform called RoboFlow, which provides a collection of 

images and associated annotations, specifically designed for training computer vision 

models. RoboFlow was chosen due to its high-quality and annotated datasets. The dataset 

consisted of construction images taken from different locations for the model 

development.  Custom images from Sri Lankan construction sites were also incorporated 

for deployment validation and to identify overfitting. The images were standardised to a 

resolution of 640×640×3 (RGB scale) to ensure the consistency of the dataset throughout 

the model training, testing and validation processes.  

The person dataset consisted of 5,483 images, with 80% allocated for training, 19% for 

validation, and 1% for testing. The hard hat dataset contained images of construction 

labourers with helmets (labelled as “hard hats”) and no helmets (labelled as “no hard 

hats”). The hard hat dataset consisted of a total of 19,745 annotated images, with 70% 

allocated for training, 20% for validation, and 10% for testing. The mobile phone dataset 

consisted of 10,768 annotated images, capturing various instances of mobile phone usage 

by people. The dataset was divided into 82% for training, 14% for validation, and 4% for 
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testing. These splits ensured that the model had a large enough dataset for learning, testing 

and validation. For this study, it was assumed that wearing a yellow hard hat is mandatory 

for construction labourers in Sri Lanka. 

3.2 MODEL TRAINING  

3.2.1 Hyperparameters  

Before training, various hyperparameters are utilised to balance the model performance 

and computational efficiency. These hyperparameters are configuration variables that 

control the training process by determining the complexity, learning rate, batch size and 

other variables (Andonie, 2019). According to Alif (2024), key hyperparameters of the 

YOLOv11 models are learning rate, momentum, weight decay, batch size and the number 

of epochs. The learning rate of a model indicates how quickly a model learns based on 

the dataset, whereas momentum accelerates the training process by smoothing out 

updates of the model. Weight decay is a regularisation technique that prevents the model 

from overfitting. Batch size represents the number of training datasets processed at once. 

The number of epochs refers to the number of times the model processed the entire 

dataset.  

In the model, all the hyperparameters, apart from the epochs number were preset with the 

values in Table 2. In this study, the model was trained for 100 epochs, allowing it to refine 

the internal parameters based on error calculations. 

Figure 1: Overall architectural diagram of YOLOv11-s model for detection of mobile phone use by 

construction labourers 
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Table 2: Key parameters for YOLOv11-s training 

Hyperparameter Value 

Learning Rate 0.01 

Momentum 0.937 

Weight decay 0.0005 

Batch Size  16 images 

3.2.2 Training Process 

After splitting each dataset into training, validation, and testing sets, the YOLOv11-s 

architecture was trained in three phases, as illustrated in Figure 1. The steps have been 

labelled as "A" for person detection, "B" for hard hat detection, and "C" for mobile phone 

detection. Additionally, the model development and deployment processes are 

represented using two types of dotted boxes: the green-coloured dotted box indicates 

training, internal validation, and testing, while the red-coloured dotted box represents 

external validation using custom Sri Lankan images. The first phase (A1) involved 

identifying the region of interest (ROI) by detecting people in the image and applying 

matrix slicing to separate the ROI area while storing the original coordinates of the ROI 

within the image. During this stage, the model performed object localisation by 

generating bounding box coordinates, assigning a confidence score, and classifying 

detections as person or no-person. The bounding box coordinates were determined as 

shown in Figure 2. Here, if a person was detected in the image, the model was trained to 

process only the selected region of interest (ROI) to the next phases. The total training 

time of the person detection model was 2.416 hours. 

Similarly, in the second phase (B1), the model was trained to detect construction hard 

hats and accurately localise their positions within the image, where detected objects were 

classified as either hard hat or no-hard hat. The total training time for the hard hat 

detection model was 6.827 hours. In the third phase (C1), the model was trained using 

the mobile phone dataset to detect and localise mobile phones. Unlike the person 

detection model and hard hat detection model, C1 focused solely on detection, where the 

model was trained to determine whether a mobile phone was present in an image, without 

further classification. The total training time for the mobile phone detection model was 

5.192 hours. 

Figure 2: Bounding box coordinates 
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3.3 MODEL VALIDATION (INTERNAL) 

During each training epoch, the model underwent an internal validation process to assess 

its performance and generalisation ability. The validity of the model was determined 

using several metrics such as precision, recall, mean average precision (mAP), and 

inference time.  

3.4 MODEL INFERENCE 

After training, the inference process (A2 to C2) was conducted to evaluate each model’s 

performance. As illustrated in Figure 1, the inference pipeline consists of four key 

components: to detect people, the presence of hard hats, the colour of hard hats and the 

use of mobile phones. The first component of the pipeline is the YOLOv11-s person 

detection model, which detects (A2.1), localises (A2.2), and slices the matrix (A2.3) to 

isolate ROI1 (the detected person) from the full image. This step provided the subsequent 

detections with enlarged ROI focusing only on relevant regions. 

The sliced matrix is passed through the hard hat detection model, which detects (B2.1) 

and localises (B2.2) hard hats within the ROI. After localisation, the hard hat region 

undergoes image preprocessing (B2.3 to B2.8) to determine its colour accurately. Due to 

varying lighting conditions, detecting a fixed hard hat colour was challenging, as some 

areas of the hard hat appeared shinier or darker than others. The Red-Green-Blue (RGB) 

colour scale relies on fixed values, which are suitable for consistent lighting conditions. 

However, inconsistent lighting caused by environmental factors made the RGB-based 

colour scale unsuitable for this model. To overcome this limitation, this study used the 

Hue-Saturation-Value (HSV), which employs a range of values to define colours. By 

applying histogram analysis, the primary colour of the hard hat was determined based on 

the HSV range it belonged to. As shown in Figure 3, the central part of the upper half of 

the ROI was focused (B2.3), lighting and contrast were adjusted (B2.4), and its HSV 

values were extracted (B2.5). A histogram analysis (B2.6) was then performed to detect 

the colour (B2.7) and classify the hard hat as either “yellow hard hat” or “no yellow hard 

hat” (B2.8). 

After the hard hat detection, the processed image was passed through the YOLOv11-s 

mobile phone detection model (C2). This model detects the presence or absence of a 

mobile phone (C2.1), highlighting whether a labourer is using a mobile phone in the 

image. Finally, the pixels in the original image were replaced with the processed image 

containing the detected elements. Here, the original image is displayed with the detections 

made. 

Confidence 
score 

Central part of the upper half 
of the region of interest  

Figure 3:Region of interest 

1/4 1/4 
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3.5 MODEL DEPLOYMENT VALIDATION 

The model was validated using images obtained from Sri Lankan construction sites (D) 

to assess its applicability within the Sri Lankan context and to check for potential 

overfitting. 

4. RESULTS AND PERFORMANCE EVALUATION 

4.1 CONFUSION MATRIX 

A confusion matrix of 2x2 classifiers determines the predicted and actual classification. 

Table 3 provides the details of a 2x2 confusion matrix, which provides the relationship 

between true positives, false positives, true negatives and false negatives. As shown in 

Figure 2, the model provides a confidence score for the certainty of its detection, which 

plays a crucial role in identifying the false negative and false positive labels (Wenkel et 

al., 2021). In this study, a confusion matrix was generated only for the hard hat detection 

model, which performed detection and classification. 

Table 3: Standard Confusion Matrix 

 Actual Positive Actual Negative 

Predicted Positive True Positive (TP) False Positive (FP) 

Predicted Negative False Negative (FN) True Negative (TN) 

Figure 4 provides the normalised confusion matrix of the hard hat detection model, which 

detects two classes: hard hat and no hard hat. The values are normalised to represent the 

proportion of the outcome instead of raw counts, which undergoe object detection and 

classification. The values are normalised to represent the proportion of the outcome 

instead of raw counts. The matrix indicates 95% accuracy for hard hat detection and 90% 

accuracy for no-hard hat detection, with significantly low false positive and false negative 

rates.  

4.2 PRECISION-RECALL CURVE 

Precision measures the ratio of true positive detections to the total positive detections 

made (see Equation 1). This reflects the ability of the model to accurately classify “hard 

hat” or “no-hard hat” without generating false detections. A high precision score indicates 

a lower rate of false detection. Meanwhile, recall measures the ratio of true positive 

detection to the total actual positive labels (see equation 2). It indicates how well positives 

Figure 4: Normalised confusion matrix for hard hat classification 
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are recalled. A high recall score indicates that the model is effective in detecting the 

relevant instances.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1)                                           𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃+𝐹𝑁
     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2)      

To achieve high prediction accuracy, it is crucial to maintain a balance between precision 

and recall. A model with high precision but low recall is very accurate in its positive 

predictions but misses a significant number of actual positive labels, while high recall but 

low precision may lead to excessive false positives. Therefore, a precision-recall (PR) 

curve for each detection task illustrates how well the model trades off these values. 

The PR curve in Figure 5 shows the balance between precision and recall for the person 

detection model. Accordingly, the model achieved a high precision at a lower recall value, 

indicating a high probability of correct positive prediction. As the recall value increases, 

the false positive prediction also increases. The PR score for the person detection model 

was 0.826, indicating that the model correctly detects 82.6% of the actual instances. 

Similarly, the PR curve for hard hat detection in Figure 6 demonstrates high precision-

recall scores, with 0.933 for hard hat detection and 0.927 for no-hard hat detection. The 

model maintains high precision across most recall values. This indicates the model can 

correctly classify hard hats while minimising false positives. Finally, Figure 7 presents 

the precision-recall curve for mobile phone detection, which also indicates a high PR 

value of 0.916, indicating that the model correctly detects 91.6% of the actual instances. 

4.3 MEAN AVERAGE PRECISION (MAP)   

The mAP calculates the average precision across multiple Intersections over Union (IoU) 

thresholds. Here, mAP@0.5 was calculated, where the average precision was calculated 

at a threshold of 0.5. This evaluated the accuracy of the classification. 

𝑚𝐴𝑃@0.5 =  
1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 (𝑛)
∑ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛      𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (3)𝑛.

𝑖=1   

According to Figures 5, 6, and 7, the mAP@0.5 of the person detection model, hard hat 

detection model, and mobile phone detection model were 0.826, 0.930, and 0.916, 

respectively. These results indicate that each model achieved a high detection accuracy, 

with scores exceeding the identified threshold values. The hard hat detection model 

showed the highest performance among the trained models. These results infer that the 

trained models can provide accurate detection in construction site environments. 

Figure 6: Precision-Recall curve 

for hard hat detection model 

Figure 7: Precision-Recall curve 

for mobile phone detection 

Figure 5: Precision-Recall 

curve for person detection 
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4.4 INFERENCE TIME  

Inference refers to the process of using a trained model to make predictions on new, 

unseen data by processing an image and generating detection results. The inference time 

of the model measures the average time taken by the YOLOv11-s model to process a 

single image and generate the detection results. The YOLOv11-s model demonstrated 

fast inference times, with the person detection model achieving the quickest processing 

of 4.9ms. The hard hat detection model took 8.5ms, which is slightly longer due to the 

added classification of hard hat and no-hard hat classes. Similarly, the mobile phone 

detection model had an inference time of 8.4ms, due to the additional processing required 

for detecting smaller objects. All three models demonstrated a fast-processing time which 

indicated that the model is suitable for real-time application. 

4.5 TRAINING AND VALIDATION LOSS 

Furthermore, the loss function, also referred to as the error function, quantifies the error 

between the algorithm’s predicted output and the actual output. The YOLOv11-s model 

uses a unified loss function, which is a combination of three loss components. This 

includes Complete Intersection over Union loss (CioU), Binary Cross Entropy Loss 

(BCE) and Distribution Focal Loss (DFL). CioU is used for the bounding box regression 

(box_loss) (Zheng et al., 2021), BCE is used for the classification (cls_loss) (Li et al., 

2024)and DFL is used for better localisation accuracy by refining the predicted bounding 

box coordination (dfl_loss) (Wang et al., 2023).  

Figures 8, 9 and 10 provide the training and validation loss curves recorded during the 

model’s training in person detection, hard hat classification and mobile phone detection. 

As the number of epochs increased, the loss function steadily decreased indicating an 

Figure 8: Training and validation loss curve for 

person detection 

Figure 9: Training and validation loss curve 

for hard hat classification 

Figure 10: Training and validation loss curve for mobile phone detection 
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effective learning and optimisation by the model. Similarly, the precision, recall and mAP 

metrics exhibited a steady increase over epochs, reinforcing the model’s improving 

performance. The model's stable performance suggests high reliability in classifying hard 

hat and no-hard hat cases.  

4.6 MODEL DETECTIONS 

Figure 11 presents the detections performed by the model across various conditions 

during the testing phase. Here the detection is indicated with a bounding box and a 

confidence score which demonstrates the level of certainty of the model in making the 

detection.  

4.7 MODEL DEPLOYMENT IN THE SRI LANKAN CONTEXT 

The model was tested with custom images obtained from Sri Lankan construction sites, 

captured with cameras and mobile phones to validate its deployment performance and to 

check for model overfitting. The Sri Lankan construction site dataset included images 

taken from distant locations, where the person detection model and matrix slicing played 

a crucial role in enlarging the ROI for subsequent detections. After detecting the mobile 

phone, the processed image was refitted to the original image using its initial coordinates 

with detection results as shown in Figure 12 to Figure 14.   

5. CONCLUSIONS AND RECOMMENDATIONS  

This study presented an analysis of the YOLOv11-s model in the detection of mobile 

phone use by construction labourers. The use of YOLOv11-s has demonstrated faster 

processing by structuring detection into four components: (1) detection of people, (2) 

detection and classification of hard hats, (3) image processing to detect hard hat colour 

and (4) mobile phone detection.  Training, internal validation and testing of the model 

were done using datasets obtained from an online database. The model was externally 

validated for deployment using custom images obtained from Sri Lankan construction 

sites and checked for potential overfitting. With high inference speed and accuracy, the 

model indicated a satisfactory level of applicability to the Sri Lankan context and proved 

to be a solution for construction projects concerned with productivity challenges caused 

by mobile phone distractions among labourers. While the system was tested on Sri 

Lankan site images for the deployment, the methodology and model architecture are 

universally applicable across global construction environments. Even though the model 

demonstrated a satisfactory level of accuracy, the detection accuracy may vary depending 

on external factors such as dust levels in surroundings, weather conditions, detection 

Figure 11: Construction 

labourers with mobile 

phones 

Figure 12: Construction 

labourer with mobile 

phone 

Figure 13: 

Construction labourer 

with blue helmet 

Figure 14: Construction 

labourer without helmet 

and with mobile phone 
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distance, and the quality of captured photos, which is a limitation of this study. Therefore, 

future research can focus on enhancing the proposed model by training it with a large set 

of Sri Lankan images captured under diverse environmental conditions and lighting 

variations to improve its reliability. Additionally, the model can be developed to detect 

continuous mobile phone usage among site labourers through motion detection and 

timeframe analysis using the Internet of Things (IoT). This would enable the model to 

monitor frequent and prolonged mobile phone usage from CCTV footage, providing real-

time alerts to supervisors to enhance productivity on construction sites. 
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