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COMPARISON OF YOLO ALGORITHMS 

FOR PPE COMPLIANCE MONITORING AT 

CONSTRUCTION SITES 

S. Sivanraj1, D.N.L.S. Uduwage2 and M. Tripathi3  

ABSTRACT 

Safety is a critical concern in the construction industry, where workers are exposed to 

various hazards that can lead to serious injuries or fatalities. Personal Protective 
Equipment (PPE) is vital in protecting the workers and increasing their safety. However, 

ensuring consistent PPE compliance among construction workers remains a challenge. 

To overcome this challenge, this study developed automated PPE compliance 
monitoring models through the You Only Look Once (YOLO) object detection algorithm. 

The variants of YOLO algorithms such as YOLOv8-s, YOLOv9-s, and YOLOv11-s were 

trained to identify the best performance model to detect and classify the presence of 
humans and four major PPE items: helmets, high-visibility vests, gloves, and boots. To 

prevent the overfitting of the models, early stopping with a patience level of 20 epochs 
was set to the models. The system was externally validated using the construction sites’ 

images to check its applicability to the Sri Lankan context. The efficacy of each model 

was assessed using performance evaluation matrices such as precision-recall curves, 
mean Average Precision (mAP@0.5), inference time, and loss function values. The 

results show that YOLOv9-s outperformed the other models in overall performance even 

though, it went through the highest number of epochs during training. Future work can 
explore enhancing the YOLOv9-s model performance by integrating motion detection 

through IoT devices, allowing for more precise tracking of PPE compliance and 
reducing false detections of idle or stored PPE. This approach could significantly 

improve real-time monitoring of PPE compliance for worker safety at construction sites. 

Keywords: Construction; Object Detection; Personal Protective Equipment; Safety; 

Workers. 

1. INTRODUCTION 

Personal Protective Equipment (PPE) compliance is essential in construction sites to 

mitigate workplace hazards and ensure worker safety since the construction industry is 

one of the most hazardous sectors, with a high incidence of workplace injuries and 

fatalities (Ajmani et al., 2024). Construction sites often present hazards including falls, 

slips, trips, exposure to hazardous materials, operating heavy machinery (Bedi et al., 

2021) and working at significant heights (Nadhim et al., 2016). Consequently, hazards 

caused by these at construction sites can be severe for construction workers. Therefore, 
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safety regulations mandate the compliance of PPE to mitigate the risks (Muntiyono et al., 

2021). PPE compliance refers to the proper use of PPE, which significantly reduces the 

likelihood of workplace hazards; however, ensuring compliance remains a key challenge 

(Trubetskov et al., 2023). Despite safety regulations, many workers fail to wear the 

required PPE, partly due to the inefficiency of site supervision and shortcomings in safety 

management systems (Wong et al., 2020). 

According to Trubetskov et al. (2023), site supervision plays a crucial role in maintaining 

PPE compliance; however, manual supervision is often inefficient and costly (Raoofi et 

al., 2024). According to Tian (2023), traditional manual supervision is costly and time-

consuming for construction sites, which makes it difficult for supervisors to monitor 

every worker in real-time, leading to increased workplace risks. As a result, there is a 

growing demand for automated solutions that can enhance PPE compliance monitoring 

without the need for constant human involvement. 

Recent advancements in deep learning and computer vision provide significant 

alternatives to manual monitoring. According to Pal & Hsieh (2021), deep learning 

enables the analysis of complex visual data, improving the accuracy and efficiency of 

PPE detection. Similarly, Bai et al. (2023) found that automated PPE detection using deep 

learning ensures more consistent and efficient monitoring. Object detection models, 

particularly those based on the You Only Look Once (YOLO) architecture, have 

demonstrated high accuracy and speed in real-time applications within the construction 

industry (Bai et al., 2023; Lin, 2024; L. Wang et al., 2023) 

Although several studies have evaluated the performance of YOLO models in detecting 

PPE compliance at construction sites, there remains a lack of research focusing on the 

detection of multiple PPE types using the latest YOLO iterations. This study introduces 

the PPE detection model using YOLOv11-s algorithm and compares its performance with 

the models developed using YOLOv8 and YOLOv9 algorithms to determine their 

effectiveness in the real-time detection of helmets, high-visibility vests, gloves and boots. 

Each model was trained, tested and validated on construction site images. 

2. LITERATURE REVIEW 

2.1 SIGNIFICANCE OF SAFETY AND PPE COMPLIANCE  

Construction sites inherently pose significant risks due to the nature of activities 

performed, the wide range of equipment in operation, and the dynamic work environment 

(Sanni-Anibire et al., 2020). According to recent data on occupational hazards, the 

construction industry continues to experience disproportionately high levels of workplace 

incidents. Statistics indicate that in 2022, 22.9% of all fatal accidents within the European 

region occurred in the construction sector. The construction risks are linked to multiple 

factors, including working in areas prone to trips and slips, operating heavy machinery 

(Bedi et al., 2021), working at heights (Nadhim et al., 2016), exposure to hazardous 

materials (Blaauw & Maina, 2022) and exposure to electrocution. Many of these hazards 

can be avoided if construction sites adhere to PPE compliance. 

PPE compliance refers to the proper use of essential safety equipment such as helmets, 

high-visibility vests, gloves, and boots. These PPEs play a vital role in protecting workers 

from the construction site hazards (Al-Bayati et al., 2023). Ensuring compliance is crucial 

in reducing workplace hazards, yet many construction workers fail to adhere to PPE 
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requirements. Al-Bayati et al. (2023) identified 16 factors that influence PPE compliance 

in construction, with supervision being a key determinant in ensuring adherence to safety 

protocols. To enhance PPE compliance monitoring, effective supervision is necessary. 

However, in large-scale construction projects, manually monitoring compliance can be 

often costly, time-consuming, and inefficient (Raoofi et al., 2024). Manual monitoring 

also introduces challenges such as human error, resource constraints, and the inability to 

track every worker in real-time (Tian, 2023). Due to these limitations, researchers have 

explored alternative solutions through computer vision-based systems to improve PPE 

compliance monitoring. 

2.2 AUTOMATED PPE COMPLIANCE MONITORING  

The use of computer vision has revolutionised construction site monitoring using real-

time object detection (Yang et al., 2024). According to Ahmed et al. (2023), computer 

vision can be used to automate PPE monitoring and to detect compliant and non-

compliant workers in real-time. Several studies have demonstrated the effectiveness of 

computer vision models in detecting PPE compliance. For instance, Delhi et al. (2020), 

developed a Convolutional Neural Network (CNN) model to detect the presence of 

construction helmets and high-visibility vests. Similarly, Ahmed et al. (2023) developed 

a CNN model to detect helmets of different colours, high-visibility vests and safety boots.  

The CNN object detection models are broadly categorised into two major types: (1) one-

stage object detection and (2) two-stage object detection. The key distinction between 

these types lies in their approach to regional proposal generation (García et al., 2021). 

Two-stage detection models, such as the Region-based Convolutional Neural Network 

(R-CNN), first generate region proposals before classifying and localising objects (Du et 

al., 2020). This additional step enhances detection accuracy, making them ideal for tasks 

that require precise object identification. However, one-stage object detection models 

such as YOLO directly classify and localise the object with high speed in a single pass 

(García et al., 2021). This approach significantly improves detection speed, making one-

stage models highly suitable for real-time applications where fast inference has a higher 

priority. 

2.3 YOLO MODELS FOR OBJECT DETECTION 

YOLO is a single-stage object detection algorithm known for its speed and accuracy in 

detecting multiple objects. It consists of three major components: (1) backbone, (2) neck 

and (3) head. According to Mahasin & Dewi (2022), the backbone acts as a feature 

extractor, the neck is the feature fusion module finally, the head is responsible for the 

classification and localisation of the object.  

The YOLO family has undergone several advancements and has been widely applied for 

PPE compliance monitoring. Research by Delhi et al. (2020) developed a construction 

safety helmet and high visibility vest detection model using YOLOv3. Similarly, Velasco 

& Marasigan (2024) investigated the use of YOLOv7 for PPE compliance detection 

validating its effectiveness in real-time safety monitoring. Additionally, Guney et al. 

(2024) conducted a comparative study to evaluate the performance of YOLO-NAS, 

YOLOv8 and YOLOv9 for PPE compliance monitoring. According to Rasheed & 

Zarkoosh (2024), YOLOv11 is one of the latest versions of the YOLO family. Each 

YOLO model has variants tailored to diverse computational and application needs 

(Kishor, 2024). The variants of YOLOv8, YOLOv9 and YOLOv11 vary from nano to 
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extra-large allowing users to balance speed, accuracy and computational efficiency. The 

nano variant models are particularly useful for low-power devices which focus on speed, 

whereas the extra-large variants are useful for high-performance systems. The small 

model offers a balance between speed and accuracy which is suitable for medium-scale 

applications such as real-time PPE compliance monitoring.  

2.4 SIGNIFICANCE OF THE STUDY  

Studies have shown that manual monitoring of construction sites can be costly, time-

consuming and inefficient. The challenges of manual construction site monitoring can be 

overcome by automated techniques especially by using single-stage object detection 

models such as YOLO algorithms. There are various advancements in the YOLO family, 

each consisting of a different capability. Several studies have attempted to use YOLO 

models for PPE compliance detections (Delhi et al., 2020; Velasco & Marasigan, 2024) 

and a few have carried out comparisons of YOLO models such as Guney et al. (2024). 

However, no studies have attempted to compare the latest iterations of YOLO, such as 

YOLOv11, to assess its performance in terms of PPE compliance detections. Therefore, 

this study was carried out to determine the best YOLO iteration for PPE compliance 

monitoring. 

3. METHODOLOGY  

According to Wang et al. (2025), YOLOv10 is an efficient model designed for general 

object detection; however, it does not inherently support oriented bounding box detection, 

limiting its suitability for applications requiring precise object localisation. Therefore, 

this study used three variants of YOLO algorithms such as YOLOv8-s, YOLOv9-s, and 

YOLOv11-s to develop three PPE detection models. The models detect humans and four 

essential PPEs such as helmets, high-visibility vests, gloves and boots. The models were 

developed on an online platform, and their performance was evaluated and compared 

based on PR values, mAP, and inference speed.  

3.1 DATASET  

One of the critical stages in developing a model using the YOLO algorithm is collecting 

a relevant dataset. In this study, 2,092 images were obtained from an online database 

called RoboFlow. This online database of images was captured from various construction 

sites without any specific consideration for the geographical location of the site. 

Therefore, a previously available dataset was suitable for this study.  The same dataset of 

images was consistently used across training, testing, and validation phases of the model 

to ensure fair comparison. As such, environmental factors such as lighting conditions, 

weather, or site-specific occlusions were not varied or controlled. However, all 

photographs were taken during the day, under natural lighting conditions. The dataset 

was split into 70% for training, 20% for internal validation, and 10% for testing. 

Furthermore, custom images from local construction sites were collected to externally 

validate and assess the applicability of the model to the Sri Lankan projects. To maintain 

consistency across training, validation, and testing phases, all images were pre-processed 

to a fixed resolution of 640×640×3 in the Red-Green-Blue (RGB) colour scale.  
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3.2 MODEL TRAINING 

This section outlines the training methodology applied in this study. By maintaining the 

same training parameters and procedures, the evaluation aimed to identify the most 

optimal YOLO model for PPE detection without bias from differing training setups. 

3.2.1 Hyperparameter 

Within YOLO models, hyperparameters play a crucial role in balancing model 

performance and computational efficiency. Several key hyperparameters were utilised in 

this study, including batch size, learning rate, momentum, and weight decay. 

The dataset images were fed into the model batch-wise, with a batch size of 64 images, 

allowing for efficient training. The learning rate, which determines how quickly a model 

learns during training, was set at 0.01. The momentum, which helps to accelerate learning 

and smooth gradient updates, was set at 0.937. Weight decay, a regularisation technique 

used to prevent overfitting was set at 0.0005. These hyperparameters are preset within the 

model but can be fine-tuned for optimisation. 

Additionally, the number of epochs, which determines how many times the dataset passes 

through the entire training cycle, was set to 300 epochs in this study. However, prolonged 

training can lead to overfitting, where the model learns patterns specific to the training 

data but fails to generalise well to new inputs. To mitigate this, early stopping with 

patience set to 20 epochs was implemented. This technique prevents overfitting by 

stopping further training of the model when the model’s performance stops improving. 

The patience value of 20 epochs specifies that the training will automatically stop if there 

is no improvement in evaluation metrics for 20 consecutive epochs. Accordingly, 

Figure 1: Overall architectural diagram for PPE detection models 
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YOLOv8-s, YOLOv9-s and YOLOv11-s models went through total epochs of 164, 300 

and 160, respectively, during the training and validation process. 

3.2.2 Training Process 

After splitting the dataset, the three models were trained separately, as shown in Figure 

1. The blue dotted line illustrates the model development process, while the pink dotted 

line represents the model deployment process. In the model development, the training 

phase utilised two types of input data: (1) plain images and (2) annotations. The 

annotation provides coordinates of the localised objects such as humans, helmets, high-

visibility vests, gloves, and boots. With each training epoch, the system underwent 

validation. Upon completion of training, the models were further tested to determine and 

compare the key evaluation matrices. The time to train YOLOv8-s, YOLOv9-s, and 

YOLOv11-s was 1.273 hours, 3.612 hours and 1.420 hours, respectively.  

3.3 MODEL VALIDATION  

The validation step in YOLO models is crucial for assessing model performance and 

generalisation. In this study, the proposed three models underwent two phases of 

validation: (1) internal validation and (2) external validation. Internal validation was 

performed using 20% of the dataset from an online database, ensuring that the models 

were validated in parallel for each training iteration. This process allowed for continuous 

performance monitoring and determined the optimal number of epochs required for 

training. By analysing validation results, training was halted at the appropriate stage to 

prevent overfitting and ensure model generalisation.  

Once the models were fully trained and tested, external validation was conducted to 

evaluate their adaptability to the Sri Lankan context. This phase involved testing the 

models on custom images collected from Sri Lankan construction sites. These images, 

captured using mobile phones, provided a diverse and realistic dataset which included 

various angles, lighting conditions, and image qualities, including both daytime and 

nighttime scenarios. 

3.4 MODEL INFERENCE 

Once the models were fully trained, they were tested using 10% of the dataset through 

the inference pipeline. Model inference refers to the process of using a trained model to 

predict outputs for an unseen dataset. In the inference pipeline, each model first detected 

the presence of PPE in the input image. The models then generated bounding boxes with 

coordinates and confidence scores, allowing them to localise humans and four PPE 

classes: helmets, high-visibility vests, gloves, and boots. The bounding box coordinates 

were determined based on key parameters, including the bounding box size, the centre 

coordinates of the bounding box, and the classes of detected objects within the image 

with human as class 1, helmet as class 2, high-visibility vest as class 3, gloves as class 4 

and boots as class 5. 

As illustrated in Figure 1, Point C represents the centre of the bounding box, while Point 

P denotes the top-right corner of the image. The confidence score associated with each 

bounding box indicates the model’s certainty in detecting the object. While a higher 

confidence score signifies greater certainty, the detection threshold must be adjusted 

based on object size to ensure accurate classification. In this study, a confidence threshold 
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of 25% (or 0.25) was used to balance detection accuracy and false positives. Following 

localisation, the models classified the detected objects into five classes. 

4. RESULTS AND PERFORMANCE EVALUATION  

4.1 CONFUSION MATRIX  

According to Caelen (2017), a confusion matrix evaluates the performance of 

classification by a model. It provides the breakdown of the model’s prediction against the 

actual outcomes. When there are six distinct classification categories, a 6×6 confusion 

matrix can be used to analyse the model’s performance.  A 2x2 confusion matrix has been 

given in Table 1.  

Table 1: Standard confusion matrix 

 Actual Positive Actual Negative 

Predicted Positive True Positive (TP) False Positive (FP) 

Predicted Negative False Negative (FN) True Negative (TN) 

In the PPE detection models, a true positive would mean correctly detecting a class of 

Human or PPE, whereas a true negative would indicate correctly recognising the absence 

of PPE. A false positive would occur if the model mistakenly detected a different class. 

In the proposed models, there are five primary classes: human, helmet, high-visibility 

vest, gloves, and boots. These classes represent different PPE components and human 

presence detected within construction site images. Additionally, when none of these five 

classes is present in an image, it is labelled as background. During inference, if an image 

contains no PPE or human presence, it is classified under this background category.  

Figures 2, 3, and 4 present the normalised confusion matrices for YOLOv8-s, YOLOv9-

s, and YOLOv11-s, respectively. The values have been normalised to ensure 

comparability across different class distributions. These matrices show the accuracy of 

true positive classifications, reflecting how well each model classified the presence of 

different PPE classes. The overall accuracy of each model in correctly classifying PPE 

items is summarised in Table 2. 

  

Figure 2: Normalised confusion 

matrix for YOLOv8-s model 
Figure 3: Normalised confusion 

matrix for YOLOv9-s model 

Figure 4: Normalised confusion 

matrix for YOLOv11-s model 
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Table 2: Comparison of true positive accuracy of the three models 

 YOLOv8-s YOLOv9-s YOLOv11-s 

Human 0.97 0.96 0.97 

Helmet 0.97 0.97 0.97 

High-visibility vest 0.99 0.99 0.99 

Gloves 0.79 0.79 0.83 

Boots 0.96 0.97 0.97 

Across all three models, the detection accuracy for humans, helmets, high-visibility vests, 

and boots remained consistently high, with the high-visibility vest class demonstrating 

the best performance. However, gloves presented a greater challenge, as all three models 

exhibited comparatively lower accuracy in detecting them. Instances of misclassification 

were observed, where images containing no PPE classes were incorrectly classified as 

containing boots, gloves, helmets, humans, or high-visibility vests. This misclassification 

occurred across all models, indicating difficulties in distinguishing background elements 

from actual PPE instances. The highest misclassification rate was recorded in the 

YOLOv11-s model, where 30% of the misclassified cases involved the incorrect 

detection of a high-visibility vest in images where none were present, suggesting potential 

overfitting in the model. 

4.2 PRECISION-RECALL CURVE 

The models' performance was further tested using precision and recall which are two key 

metrics for evaluating the performance of the YOLO models. Precision (Equation 1) 

measures how accurately the model identifies the true positive and shows how often the 

model is correct when making the classification. Recall (Equation 2), on the other hand, 

measures the model's ability to detect all relevant instances in a dataset and shows how 

well a model classifies all the actual classes. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
      𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1)                                        𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃+𝐹𝑁
       𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2)  

There is often a trade-off between precision and recall, where improving one may 

negatively impact the other. A higher precision ensures fewer false positives, while a 

higher recall reduces false negatives. Therefore, a Precision-Recall (PR) curve was 

Figure 5: YOLOv8-s PR curve Figure 6: YOLOv9-s PR curve Figure 7: YOLOv11-s PR curve 
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generated to analyse the trade-off between these two metrics and assess the overall 

performance of each model.  

Figures 5, 6, and 7 present the precision-recall curves for YOLOv8-s, YOLOv9-s, and 

YOLOv11-s, respectively, in PPE detection. These curves illustrate how well each model 

maintained a balance between precision and recall. A higher area under the PR curve 

(AUC-PR) indicates better performance, as it reflects strong classification capabilities. 

The PR values for YOLOv8-s, YOLOv9-s, and YOLOv11-s models have been 

summarised in Table 3.   

Table 3: Comparison of PR values of the three models 

 YOLOv8-s YOLOv9-s YOLOv11-s 

Human 0.976 0.976 0.975 

Helmet 0.979 0.986 0.980 

High-visibility vest 0.991 0.991 0.991 

Gloves 0.801 0.852 0.818 

Boots 0.966 0.976 0.985 

Overall, the YOLOv9-s had the highest PR value for 4 out of 5 classes compared to the 

other two models which had the highest PR values for 2 out of 5 classes.  This makes 

YOLOv9-s the most effective model in terms of precision-recall performance. 

4.3 MEAN AVERAGE PRECISION (MAP) 

The mAP (Equation 3) measures the average precision at a single Intersection over Union 

(IoU) threshold, typically set at 50% (mAP@0.5). This provides a single metric that can 

be used to directly compare the models’ performance.  

𝑚𝐴𝑃@0.5 =  
1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 (𝑛)
∑ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (3)

𝑛.

𝑖=1

 

The mAP scores for YOLOv8-s, YOLOv9-s, and YOLOv11-s were 0.943, 0.956, and 

0.950, respectively. These results indicate that YOLOv9-s achieved the highest overall 

performance, followed closely by YOLOv11-s, while YOLOv8-s had the lowest mAP.  

4.4 INFERENCE TIME  

The inference time refers to the total time a model takes to process a new unseen image 

and generate a detection and classification output. A lower inference indicates faster 

processing, which is crucial for real-time detection applications. The inference times for 

the three models were 4.4 ms for YOLOv8-s, 7.3 ms for YOLOv9-s, and 5.4 ms for 

YOLOv11-s. These results indicate that YOLOv8-s is the fastest model, making it the 

most suitable for real-time PPE detection.  

4.5 TRAINING AND VALIDATION LOSS  

The YOLO models utilise a unified loss function to evaluate performance and prevent 

overfitting during training. This loss function consists of three primary components: box 

loss, classification loss, and distribution focal loss (DFL). The box loss ("box_loss") 

measures the accuracy of bounding box predictions by evaluating how well the detected 

object’s bounding box aligns with the ground truth. This ensures the precise localisation 
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of PPE items. The classification loss ("cls_loss") assesses the accuracy of class 

predictions, determining whether the model correctly identifies PPE categories such as 

helmets, vests, gloves, and boots. Finally, the distribution Focal Loss ("dfl_loss") 

enhances refined classification by improving object boundary precision, ensuring that 

predicted bounding boxes align more accurately with their respective objects. 

Figures 8, 9, and 10 illustrate the loss function trends for the three models. As the number 

of epochs increased, the loss function steadily decreased. Similarly, the precision and 

recall curves showed a consistent upward trend with increasing epochs.  The number of 

epochs for each model was limited by a patience level of 20 epochs. The training and 

validation loss values of the three models are summarised in Table 4. 

YOLOv9-s, which was trained for the entire 300 epochs, achieved the lowest box loss, 

classification loss, and DFL loss among the three models. This suggests that YOLOv9-s 

had the best bounding box accuracy and classification performance. In contrast, 

YOLOv8-s and YOLOv11-s were trained for fewer epochs and exhibited higher loss 

values. The slightly higher loss values in YOLOv8-s and YOLOv11-s suggest they did 

not reach the same level of optimisation as YOLOv9-s. 

Table 4: Comparison of training and validation loss 

 YOLOv8-s YOLOv9-s YOLOv11-s 

Training Epochs 164 300 160 

Box Loss 0.5251 0.3991 0.5654 

Classification Loss 0.3071 0.1903 0.3274 

DFL Loss 0.9243 0.8883 0.9428 

Figure 8: Loss function curve for YOLOv8-s 

Model for 164 epochs 

Figure 9: Loss function curve for YOLOv9-s 

Model for 300 epochs 

Figure 10: Loss function curve for YOLOv11-s Model for 160 epochs 
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4.6 OVERALL COMPARISON OF THE MODELS 

Table 5 presents the best-performing model among YOLOv8-s, YOLOv9-s, and 

YOLOv11-s for each performance evaluation metric. The results indicate that YOLOv9-

s achieved the highest performance across all metrics, including True Positive Accuracy, 

PR Value, mAP@0.5 scores, and Training & Validation Loss. However, in terms of 

Inference Time, YOLOv8-s performed better, demonstrating a faster processing speed. 

Table 5: Overall comparison of the model 

 YOLOv8-s YOLOv9-s YOLOv11-s 

True Positive accuracy  ✓ ✓ ✓ 

PR Value  ✓  

mAP@0.5 scores   ✓  

Inference Time ✓   

Training and validation loss  ✓  

4.7 MODEL DETECTIONS  

The detections made by the models are presented in Figures 11 to 16, where each 

detection is marked with a bounding box and confidence score, indicating the model's 

level of certainty in its predictions. Comparatively higher confidence scores can be 

observed for the detections made by YOLOv9-s, indicating its superior performance in 

identifying PPE with greater certainty. Some inaccuracies were observed in the 

detections, suggesting areas for improvement. These limitations can be addressed by 

further training the models using a larger and more diverse dataset to enhance detection 

accuracy.  

Figure 11: Detection by 

YOLOv8-s 

Figure 12: Detection by 

YOLOv9-s 
Figure 13: Detection by 

YOLOv11-s 

Figure 14: Detection by 

YOLOv8-s 
Figure 15: Detection by 

YOLOv9-s 

Figure 16: Detection by 

YOLOv11-s 
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5. CONCLUSION AND RECOMMENDATIONS 

This study explored object detection for PPE compliance monitoring using YOLOv8-s, 

YOLOv9-s, and YOLOv11-s models. A dataset from an online database was utilised for 

training, enabling the models to detect the presence of humans and four essential PPE 

items, including helmets, high-visibility vests, gloves, and boots. The models were 

evaluated based on precision-recall performance, mean Average Precision (mAP@0.5), 

inference time, and loss function analysis to determine their effectiveness in real-time 

PPE detection. Among the three models, YOLOv9-s demonstrated the best overall 

performance, achieving the highest mAP@0.5 and the lowest loss values, making it the 

most optimised for PPE compliance monitoring. However, YOLOv8-s had the fastest 

inference time. This study contributes to construction safety by identifying an optimal 

YOLO-based model for PPE detection in construction safety monitoring. However, the 

model is limited to detecting only helmets, gloves, high-visibility vests, and safety boots, 

as other essential PPE, such as eye or hearing protection, was not considered. 

Additionally, factors such as varying lighting and weather conditions were not 

considered, which may affect generalisability.  

While the proposed models effectively detected PPE compliance, future research should 

focus on enhancing PPE monitoring by incorporating personalised PPE requirements 

based on specific worker roles rather than relying on generalised detection using 

YOLOv9-s. Additionally, integrating motion analysis would improve real-time tracking 

accuracy. This enhancement would also help distinguish actively worn PPE from idle or 

stored equipment, reducing false detections and improving overall system reliability. 
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