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ABSTRACT  

The construction industry faces persistent challenges due to the absence of a 

standardized financial classification system for quality-related costs, resulting in 
inefficiencies and project delays. The Cost of Quality (COQ) framework, widely utilized 

in manufacturing, remains underutilized in construction due to its static assumptions 

that fail to account for complex interdependencies among quality costs. This study 
refines COQ classifications and examines the relationship between visible factors (VF) 

and hidden factors (HF) by using a predictive approach. To fill this gap, a questionnaire 

survey of 142 construction quality professionals in India was analyzed using SmartPLS 
4.0, leading to the development of a predictive COQ model. The Partial Least Squares 

Structural Equation Modelling (PLS-SEM) results reveal that prevention costs 
significantly reduce external failure costs (β = 0.465, p < 0.05), while other hypothesized 

paths, including internal to external failure, were not statistically significant. The model 

explains 13.2%–22.0% of the variance across COQ components. These findings suggest 
that prioritizing preventive measures, particularly strategic planning and quality data 

analysis, is crucial for cost optimization in construction. The study contributes a 

validated predictive framework and highlights avenues for future research, including 

regional COQ indexes and AI-enhanced quality monitoring. 

Keywords: Complexity Theory; Construction Industry; Cost of Quality; Predictive 

Model; SmartPLS. 

1. INTRODUCTION  

Quality issues in construction projects are a major concern, frequently leading to disputes 

between clients and contractors due to defects and inconsistent quality standards (Jha & 

Chockalingam, 2009). Studies indicate that poor quality in construction results in 

significant project delays, costly rework, and reduced overall efficiency (Kazaz & 

Birgonul, 2005). One of the key factors contributing to these challenges is the lack of 

uniformity in defining and measuring quality. In construction, quality is often defined as 

"fitness for use," while in other industries, it is characterized as "meeting customer 

expectations." This inconsistency in definitions can lead to subjective assessments and 

financial inefficiencies.  
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The emergence of Quality 4.0, which integrates digital tools and smart technologies to 

improve quality management, presents a new opportunity to enhance quality frameworks 

in construction. Traditional Quality Management (QM) approaches, such as Total Quality 

Management (TQM), International Organization for Standardization (ISO) standards, and 

Six Sigma, have been widely used to improve quality performance (Sharma & Laishram, 

2024). These approaches have led to better communication, reduced material wastage, 

and fewer instances of rework. However, despite their benefits, the construction industry 

continues to struggle with accuracy in quality standards, leading to non-transparent 

decision-making and cost inefficiencies (Hall & Tomkins, 2001). Many construction 

firms also underestimate the actual expenses linked to poor quality, affecting their overall 

profitability. The manufacturing sector, in contrast, has successfully demonstrated how 

effective quality management can drive profitability and establish consistent quality 

standards through the Cost of Quality (COQ) framework (Pursglove, 1995). COQ 

analysis enables organizations to set quality objectives, evaluate system efficiency, and 

develop strategic decisions. While COQ has proven effective in quantifying and 

improving quality management in manufacturing, its application in construction remains 

limited. A significant reason for this underutilization is the reliance on traditional 

accounting systems, which often fail to align with COQ measurement needs. As a result, 

many construction firms overlook the financial benefits of proactive quality management, 

leading to higher failure costs and reactive quality control measures (Garg & Misra, 

2021). A key limitation of the traditional COQ framework is its static nature, which 

assumes fixed relationships between cost components (Kazaz et al., 2005). In reality, 

quality-related costs interact dynamically as organizations enhance their quality 

processes; the costs associated with prevention and appraisal fluctuate, influencing failure 

costs over time. The traditional COQ model does not account for these adaptive changes, 

leading to gaps in decision-making. To address these issues, there is a need for a more 

dynamic COQ framework that incorporates complex interactions and feedback 

mechanisms within quality management systems. This study introduces a new 

perspective on COQ, modelling dynamic interactions between cost components and 

incorporating Visible Factors (VF) and Hidden Factors (HF). By leveraging complexity 

theory, this research proposes a more adaptable COQ model that reflects real-world 

quality cost variations in construction. To bridge the theoretical and practical gaps in 

COQ applications within the construction industry, this study sets out to achieve three 

key objectives: (i) to investigate the dynamic interrelationships among the four COQ 

categories such as prevention, appraisal, internal failure, and external failure costs; (ii) to 

evaluate the influence of visible and hidden factors on quality cost performance; and (iii) 

to construct and validate a predictive model using Partial Least Squares Structural 

Equation Modelling (PLS-SEM). By contextualizing these objectives within construction 

project environments and applying complexity theory, the study provides new insights 

into how strategic quality investments can lead to improved cost efficiency and decision-

making. 

2. LITERATURE REVIEW 

2.1 CONCEPT OF COST OF QUALITY 

The COQ framework was first introduced by Juran and Godfrey (1951) in their book 

Quality Control Handbook. They defined COQ as the total cost incurred due to quality-

related issues, emphasizing that these costs could be eliminated if no quality problems 
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existed. Similarly, Crosby (1979) described COQ as a key performance indicator, stating 

that reducing quality-related costs leads to improved overall performance. This 

perspective highlights COQ as a critical tool for translating quality efforts into financial 

metrics, making it more accessible to decision-makers and project managers in 

construction. 

The COQ framework is classified into four key categories, based on BS 6143: Part 2 

(1990): 

1. Prevention costs – Investments made to ensure consistent quality performance 

through employee training, system improvements, and defect prevention (Hall & 

Tomkins, 2001). 

2. Appraisal costs – Expenses allocated to inspections, audits, and monitoring to 

maintain quality compliance (Hall & Tomkins, 2001; Heravi & Jafari, 2014). 

3. Internal failure costs – Costs associated with errors detected before project 

completion, such as rework, redesigns, and defective material replacements (Hall 

& Tomkins, 2001; Heravi & Jafari, 2014). 

4. External failure costs – Expenses incurred after project delivery, including legal 

disputes, warranty claims, and reputational damage (Hall & Tomkins, 2001). 

Most research on COQ in construction has focused on examining relationships between 

these cost categories. Some studies suggest that failure costs tend to be lower in well-

managed projects, where prevention and appraisal investments play a crucial role in 

minimizing quality issues. However, other studies challenge this assumption, arguing that 

COQ relationships are complex and influenced by various internal and external factors. 

2.2 RESEARCH GAP 

Despite the growing interest in applying COQ frameworks across industries, existing 

research has largely focused on manufacturing, leaving a gap in understanding its 

relevance to construction. Unlike manufacturing, construction projects are highly 

dynamic, involve multiple stakeholders, and suffer from inconsistent quality standards 

and documentation (Hall & Tomkins, 2001; Kazaz & Birgonul, 2005). Traditional COQ 

models are ill-equipped to account for these complexities. Moreover, few studies have 

explicitly explored how HF interact with measurable quality costs (Khadim et al., 2023). 

By integrating complexity theory and PLS-SEM, this study hypothesizes that prevention 

investments and professional roles are not only drivers of COQ efficiency but also act 

through dynamic relationships that differ by project context. This theoretical framing 

strengthens the model’s relevance to construction and provides a foundation for its 

predictive hypotheses. By developing a predictive COQ model, this research aims to 

enhance decision-making in construction quality management and provide practical 

recommendations for industry professionals. A strategic roadmap has been developed to 

address the limitations of the traditional COQ model and facilitate the adoption of a 

predictive quality cost framework in the construction industry. This approach explores 

the interrelationships among COQ components through a structured hypothesis-driven 

analysis: 

• H1: There is a significant relationship between prevention costs and internal 

failure costs, where increased appraisal efforts contribute to reducing internal 

failure costs. 
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• H2: Internal failure costs are positively correlated with external failure costs, 

meaning that higher internal failure costs are associated with greater external 

failure costs. 

• H3: There is a significant positive relationship between prevention costs and 

external failure costs, indicating that increased prevention efforts lead to a 

reduction in external failure costs. 

• H4: Stakeholder involvement plays a critical role in optimizing COQ, suggesting 

that effective engagement and collaboration contribute to achieving cost 

efficiency and quality improvements. 

3. METHODOLOGY 

This study adopted a comprehensive four-stage research strategy to explore the influence 

of VF and HF on the COQ in construction projects. The methodology was designed to 

ensure a systematic and structured approach to addressing the research objectives through 

literature review, expert validation, data collection, statistical analysis, and model 

development. The first stage involved an extensive literature review to identify key 

factors influencing COQ in construction. A desktop search using Scopus, Web of Science 

(WOS), and EBSCOhost was conducted, employing the building blocks approach for 

keyword identification (Araújo et al., 2017). The search included keywords such as "cost 

of quality," "quality costs," "construction industry," "quality models," "rework," and 

"PAF" to filter relevant studies. The snowballing and trial-and-error techniques further 

refined the selection process, leading to the identification of 22 critical factors, which 

were subsequently grouped into visible and hidden categories. The second stage involved 

the administration of a self-administered questionnaire to examine the impact of VF and 

HF on COQ components. This approach, widely recognized in construction management 

research, enabled the collection of responses from a diverse and geographically dispersed 

sample (Raouf & Ghamdi, 2020). A pilot study with five participants was initially 

conducted to assess the clarity and reliability of the questionnaire, leading to refinements 

before full-scale distribution. The final survey, developed using Google Forms, consisted 

of two sections: one covering demographic information and the other assessing 22 COQ-

related factors on a five-point Likert scale (1 = Strongly Disagree to 5 = Strongly Agree). 

The sample size was determined using Cochran's formula, establishing a minimum 

requirement of 97 respondents for a 95% confidence level (Heravi & Jafari, 2014). The 

study successfully collected 142 valid responses, ensuring statistical robustness. A 

purposive sampling strategy was employed to target professionals actively involved in 

construction quality management, allowing for a focused examination of COQ practices 

(Palinkas et al., 2015). The third stage comprised data analysis, conducted using 

Statistical Package for Social Sciences (SPSS) version 29. Various statistical techniques 

were employed to validate the data and identify key relationships: 

• Reliability Analysis: Cronbach's alpha was used to assess internal consistency, 

yielding a coefficient of 0.847, exceeding the recommended threshold of 0.7 

(Hoque & Hasan, 2022). 

• Normality Testing: The Kolmogorov-Smirnov (K-S) test and z-scores for 

skewness and kurtosis confirmed a non-normal distribution, justifying the use of 

non-parametric methods. 
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• Non-Parametric Tests: The Kruskal-Wallis test and Post-hoc analysis identified 

statistically significant differences among COQ categories, aligning with the 

ordinal nature of the data (Chan & Tam, 2000). 

The fourth stage involved the construction and evaluation of a hypothetical predictive 

model. The proposed model comprises five latent constructs: prevention cost, appraisal 

cost, internal failure cost, and external failure cost. Additionally, a fifth construct, quality 

professional role, was incorporated to evaluate moderating effects. An initial conceptual 

framework was formulated on the basis of theoretical relationships (H1–H4). This model 

was tested using PLS-SEM via SmartPLS 4.0. PLS-SEM was selected due to its ability 

to handle complex models with latent variables, making it ideal for this exploratory study 

(Hair et al., 2014). Figure 1 and Table 5 presents the refined model, which reflects the 

removal of statistically insignificant paths and highlights significant influences along 

with the model's explanatory power. The model's reliability was assessed through 

Composite Reliability (CR), Cronbach’s Alpha (α), and Average Variance Extracted 

(AVE). The results showed that all AVE values exceeded 0.5, confirming strong construct 

validity (Fornell & Larcker, 1981). Additionally, bootstrapping with 5000 resamples was 

performed to establish confidence intervals for path coefficients, ensuring statistical 

robustness (Ghani et al., 2017). This four-stage methodology provides a comprehensive 

framework for analyzing COQ in construction projects, integrating expert insights, 

advanced statistical techniques, and robust modelling approaches. The combination of 

qualitative expert validation, quantitative data analysis, and PLS-SEM modelling 

enhances the practical application of COQ strategies and contributes to the ongoing 

discourse on quality management in the construction industry. 

4. DATA ANALYSIS 

The collected data was analyzed using SPSS version 29 and SmartPLS 4.0 to assess the 

relationships between COQ components and the influence of VF and HF. 

4.1 RELIABILITY AND VALIDITY ANALYSIS 

To ensure internal consistency, Cronbach’s Alpha (α) was used, achieving a reliability 

score of 0.847, surpassing the minimum threshold of 0.7. Moreover, CR further 

confirmed the robustness of the measurement model, while AVE ensured that each 

construct effectively captured the intended variance. 

4.2 NORMALITY TESTING AND NON-PARAMETRIC ANALYSIS 

Data normality was assessed using the Kolmogorov-Smirnov (K-S) test, which indicated 

deviations from normal distribution. Consequently, non-parametric tests were applied. 

The Kruskal-Wallis test examined differences across respondent groups, while Post-hoc 

analysis identified specific variations among COQ categories. 

4.3 PARTIAL LEAST SQUARE-STRUCTURAL EQUATION MODELLING (PLS-

SEM) 

4.3.1 Model Development 

A predictive model was formulated based on insights drawn from the literature review 

and findings from non-parametric tests. Through an iterative refinement process, factors 

with low path coefficients were systematically removed to enhance model consistency. 
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The finalized PLS-SEM model was assessed using reliability and validity tests, ensuring 

its robustness, as depicted in Figure 1. To verify construct reliability, key statistical 

measures including Cronbach’s Alpha, CR, and AVE, were derived from SmartPLS 4.0. 

The results confirmed acceptable convergent validity across all constructs, as summarized 

in Table 1. Additionally, discriminant validity was evaluated using the Fornell-Larcker 

criterion and cross-loading assessments. The Fornell-Larcker criterion requires that the 

square root of AVE for each construct be greater than its correlation with other latent 

variables, a condition met in this study, as detailed in Table 2. Furthermore, cross-loading 

assessments confirmed that each indicator exhibited higher loadings with its own 

construct than with unrelated variables, meeting the validity requirements outlined in 

Table 3. 

 
Figure 1: Final model 

Table 1: Results of reliability tests 

Constructs Cronbach's 

alpha 

Composite 

reliability 

(rho_a) 

Composite 

reliability 

(rho_c) 

Average variance 

extracted (AVE) 

COQ 0.765 0.788 0.758 0.451 

External Failure 0.637 0.644 0.639 0.263 

Internal Failure 0.763 0.774 0.767 0.623 

Prevention 0.819 0.825 0.822 0.436 

Table 2: Results of Fornell-Larcker criterion 

Constructs COQ External 

failure 

Internal 

failure 

Prevention Role 

COQ 0.672         

External Failure 1.061 0.513       

Internal Failure 0.797 0.441 0.789     
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Constructs COQ External 

failure 

Internal 

failure 

Prevention Role 

Prevention 0.953 0.539 0.824 0.660   

 

4.3.2 Model Evaluation 

Following the verification of reliability and validity, the model's explanatory power and 

path coefficients were assessed. The R-squared (R²) values indicated the proportion of 

variance explained by the model, with values of 22.0% for Prevention, 21.0% for Internal 

Failure, and 13.2% for External Failure, demonstrating a substantial explanatory capacity 

for these categories. The significance of the path coefficients (denoted as ß1 to ß2) was 

tested using bootstrapping with 5000 resamples in SmartPLS 4.0. The bootstrapping 

method involves resampling the dataset multiple times and rerunning the PLS model to 

ensure result consistency. The statistical reliability of the dataset, alongside observed path 

coefficients (p-values and outer weights at the 95% confidence interval), was verified 

using this methodology. The analysis revealed that two hypotheses attained statistical 

significance, whereas three hypotheses did not, as summarized in Table 4. However, all 

hypothesized relationships exhibited a positive directional influence, reinforcing the 

interconnectivity of COQ components in construction quality management.  

Table 3: Results of cross-loading of PLS model 

Items COQ External 

failure 

Internal 

failure 

Prevention Role 

EF1 (Complaints) 0.480 0.550 0.190 0.256 0.065 

EF2 (Liability claims) 0.394 0.538 0.183 0.226 -0.073 

EF3 (Penalties for poor quality) 0.515 0.691 0.165 0.254 0.091 

EF5 (Costs of repair during 

warranty period) 

0.478 0.716 0.190 0.232 0.009 

EF6 (Delay of Project) 0.537 0.692 0.262 0.285 0.048 

IF1 (Rejected item) 0.525 0.315 0.883 0.513 0.044 

IF2 (Repair, rework, or 

replacement) 

0.591 0.250 0.914 0.662 -0.012 

P1 (Strategic planning for COQ) 0.566 0.216 0.522 0.766 0.064 

P4 (Maintenance & Calibration of 

test and measuring equipment) 

0.530 0.318 0.400 0.630 0.171 

P5 (Assuring 

contractor/supplier/sub-contractor 

quality) 

0.477 0.183 0.478 0.631 0.112 

P6 (Staff training) 0.639 0.320 0.541 0.794 0.009 

P7 (Acquisition, analysis & 

reporting of quality data) 

0.556 0.327 0.466 0.751 0.100 

P8 (Quality improvement 

programs) 

0.575 0.340 0.462 0.775 0.104 
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5. RESULTS 

The findings of this study provide insights into the influence of professional roles, VF 

and HF factors, and COQ categories on quality cost dynamics in the construction 

industry. The analysis highlights key relationships that impact COQ optimization and cost 

management strategies. The Kruskal-Wallis test results indicate that a respondent's 

profession does not significantly impact their expertise in COQ components, including 

prevention, appraisal, internal failure, and external failure costs. Post-hoc analysis further 

supports this, with p-values above 0.05 across all categories. Despite the lack of 

significant variance in expertise levels, the role of quality professionals in construction 

remains vital for minimizing quality-related costs by ensuring the effective 

implementation of standards and processes. Their expertise helps mitigate defects, reduce 

rework, and improve cost efficiency. However, studies suggest that top management 

commitment is a critical determinant of COQ success (Aoieong et al., 2002). 

Organizations that prioritize structured quality investments through training, process 

optimization, and advanced quality management (QM) systems achieve greater cost 

reductions in the long term (Mashwama et al., 2017). Conversely, when management 

focuses solely on cost-cutting rather than quality improvements, higher failure costs arise 

due to rework, client dissatisfaction, legal disputes, and warranty claims (Omar & 

Murgan, 2014). A collaborative approach between top management and quality 

professionals is therefore essential for enhancing COQ efficiency and cost savings. 

The study also highlights the significance of VF and HF in COQ performance. Among 

HF, the most critical factors include strategic planning for COQ (P1) and quality data 

analysis (P7), both of which play a major role in long-term cost efficiency. Organizations 

investing in staff training and quality improvement programs experience immediate 

improvements in defect reduction and cost control. Research suggests that at least 30 

hours of quality training significantly improves workforce performance, while extending 

training to 100 hours correlates with increased labour productivity (Shafiei et al., 2020). 

Furthermore, repair and rework (IF2) costs contribute significantly to internal failure 

expenses, with studies showing that 6% to 15% of total construction costs result from 

defective materials and rework expenses (Yarnold et al., 2021). Quality improvement 

programs (P8), using methodologies such as Six Sigma, Lean, and PDCA cycles, are 

particularly effective in preventive cost optimization. 

While VF are often prioritized in quality management strategies, HF such as strategic 

planning (P1) and data analysis (P7) are frequently overlooked, despite their crucial role 

in cost reduction and process efficiency. Strategic planning enables organizations to align 

quality initiatives with business objectives, mitigating cost overruns and inefficiencies 

(Tawfek et al., 2012). Additionally, effective quality data management (P7) allows firms 

to track and predict quality-related costs, minimizing delays and preventing rework 

expenses. Without a systematic approach to data-driven decision-making, organizations 

risk misallocating resources, leading to higher failure costs and inefficient cost structures. 

This underscores the need for an integrated approach combining VF and HF to enhance 

COQ performance and ensure long-term cost optimization. 

The PLS-SEM model findings further reveal insights into COQ cost interactions. The 

study found that H1 (Prevention → Internal Failure), H2 (Internal Failure → External 

Failure), and H4 (Quality Professionals’ Role in COQ Optimization) were not statistically 

significant. While these hypotheses suggested potentially positive relationships, they did 
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not yield statistical validation (β = 0.186, p = 0.081; β = 0.180, p = 0.179; β = 0.107, p > 

0.05, respectively). This aligns with previous research, indicating that higher appraisal 

costs do not always translate into immediate reductions in internal failure costs due to 

time lags in quality improvement processes. Similarly, the absence of a direct relationship 

between internal and external failure costs suggests that poor internal failure monitoring 

may not necessarily lead to external failure cost reductions (Quinn & Bhatty, 1989), the 

impact of quality professionals in COQ optimization varies across organizations, 

depending on company policies, project scope, and available resources (Schiffauerova & 

Thomson, 2006). Conversely, H3 (Prevention → External Failure) was statistically 

significant. The findings confirm that prevention costs have a strong positive influence 

on external failure costs (β = 0.465, p < 0.05). This reinforces the argument that 

investment in preventive quality measures significantly reduces overall failure rates 

(Kiani et al., 2009). Organizations prioritizing ISO 9001-based quality frameworks 

demonstrate higher COQ efficiency, as structured quality management systems 

streamline defect prevention (Glogovac & Filipovic, 2018). Further examination suggests 

that higher prevention investments lead to lower failure costs, as increased spending on 

staff training, process improvements, and technological advancements mitigates defects 

and rework-related expenses. However, organizations must maintain a balance between 

prevention and appraisal investments to avoid over-allocation of resources (Hall & 

Tomkins, 2001). Achieving an optimal COQ strategy involves ensuring equilibrium 

between prevention, appraisal, and failure costs, where quality objectives are met while 

controlling total expenditure. Overall, the study underscores the critical role of VF, HF, 

and proactive quality investment in optimizing COQ in construction projects. The 

findings reinforce the need for strong managerial commitment, data-driven quality 

management, and strategic investments in preventive measures to achieve long-term cost 

efficiency and enhanced quality performance. 

Table 4: Path coefficients and significance values 

Hypothesis 
Path 

coefficient 

T statistics 

(|O/STDEV|) 

P 

values 

Statistical 

support 

H1: Prevention -> Internal 

Failure 
0.186 4.610 0.081 Not Supported 

H2: Internal Failure -> 

External Failure 
0.180 1.345 0.179 Not Supported 

H3: Prevention -> External 

Failure 
0.465 1.828 0.000 Supported 

H4: Role -> COQ 0.107 1.591 0.112 Not Supported 

6. CONCLUSION 

The integration of COQ techniques into the construction industry signifies a pivotal 

advancement toward more strategic and data-driven quality management. This transition 

supports a broader shift from reactive defect control to preventive, system-oriented 

quality assurance frameworks aligned with sustainability, lifecycle performance, and 

long-term value creation. However, the full potential of COQ remains underleveraged 

due to limited awareness of HF such as strategic planning, organizational alignment, and 

quality data utilization elements that profoundly shape quality outcomes but often remain 

obscured in conventional models. This study systematically identified and validated 22 
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influencing factors, categorized into VF and HF, and organized them into four thematic 

dimensions. This structured taxonomy enhances stakeholders’ ability to diagnose 

inefficiencies and design targeted interventions within quality management systems. 

Notably, VF such as staff training and process standardization serve as immediate levers 

for reducing defects and rework, while HF such as strategic quality planning and digital 

data monitoring are shown to drive long-term cost efficiencies and organizational 

learning. The model, evaluated using PLS-SEM, demonstrated that prevention costs have 

a statistically significant inverse relationship with external failure costs (β = 0.465, p < 

0.05), supporting the strategic value of preventive investments. Conversely, the 

hypothesized links between internal and external failure costs, and between prevention 

and internal failure, did not attain statistical significance, suggesting potential moderating 

variables or context-dependent dynamics that merit further investigation. 

From a theoretical perspective, the study contributes to the refinement of COQ theory by 

incorporating complexity-informed constructs and validating their operational 

interdependencies. Practically, it offers a diagnostic framework for construction firms to 

benchmark COQ performance and prioritize quality investments that yield measurable 

cost benefits. Nonetheless, certain limitations warrant consideration. The study's 

geographic scope was restricted to Indian construction professionals, and data were 

collected cross-sectionally, which may limit temporal and contextual generalizability. 

Moreover, reliance on self-reported perceptions introduces potential biases. Future 

research should focus on developing a standardized, region-sensitive COQ index to 

enable cross-context comparisons and enhance model applicability. Furthermore, 

longitudinal investigations leveraging real-time project data and AI-driven quality 

analytics are also recommended to capture dynamic quality-cost trade-offs over time. 

This study offers a foundational yet adaptable model for understanding and 

operationalizing COQ in construction. By integrating quantitative rigor with industry-

specific insights, it paves the way for more efficient, transparent, and sustainable quality 

management practices across diverse construction environments. 
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8. ANNEXURE: Model development 

 

Figure A: Development of model – Phase 1 

 

Figure B: Development of model – Phase 2 
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Figure C: Development of model – Phase 3 (Final Version) 

 

 

Figure D: Bootstrapping of the final model 


