
Shiwakoti, R.K., Limcharoen, P. and Uduwage, D.N.L.S., 2025. Short-term electricity demand forecasting 

in Sri Lanka using statistical and deep learning models. In: Waidyasekara, K.G.A.S., Jayasena, H.S., 

Wimalaratne, P.L.I. and Tennakoon, G.A. (eds). Proceedings of the 13th World Construction Symposium, 

15-16 August 2025, Sri Lanka. pp. 1260-1272. DOI: https://doi.org/10.31705/WCS.2025.94. Available 

from: https://ciobwcs.com/papers/ 

SHORT-TERM ELECTRICITY DEMAND 

FORECASTING IN SRI LANKA USING 

STATISTICAL AND DEEP LEARNING 

MODELS  

Ranju Kumari Shiwakoti1, Piya Limcharoen2 and D.N.L.S. Uduwage3  

ABSTRACT  

Electricity plays a critical role in energy sustainability. Accurate electricity demand 

forecasting supports achieving energy sustainability in Sri Lanka by enabling more 
effective planning and management of both renewable and non-renewable energy 

sources, which are required to generate the electricity. Thus, this study determines the 
best statistical and deep learning models for short-term electricity demand forecasting 

using a 4-year time series dataset, provided by the Ceylon Electricity Board of Sri Lanka 

(Jan 2020–Mar 2024). Initially, the Linear Regression, Polynomial Regression, and Fast 
Fourier Transform methods used to develop a baseline model by comparing the error 

rates of their predictions across different sequence lengths. Subsequently, the study 

proposes the use of Multilayer Perceptron and Long Short-Term Memory (LSTM) as 

deep learning methods to develop better predictive models for next-day electricity 

demand. The prediction accuracy of these two models was assessed using key 
performance metrics, including Mean Absolute Percentage Error, Mean Absolute Error, 

and Root Mean Square Error. Finally, the performance metrics of each deep learning 

model were compared against those of the baseline model.  The findings show that the 
LSTM method is very effective for predicting electricity demand. It works well with the 

dataset and gives the lowest error values for all performance metrics. The final demand 
forecasting model contributes to smarter grid development, enhances renewable energy 

integration, and supports energy sustainability by enabling a more energy-efficient 

future. 

Keywords: Deep Learning; Demand Forecasting; Electricity; Energy Sustainability; 

Renewable Energy. 

1. INTRODUCTION  

Energy sustainability is one of the Sustainable Development Goals (SDGs) (SDG 7), due 

to the broad and growing nature of energy use, the numerous environmental impacts 

associated with energy systems, and the significance of energy in living standards and 

economic development (Kufeoglu, 2022). Many countries, regions, and cities are 
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working toward energy sustainability by reassessing their energy consumption, which at 

present is below the required threshold (Kufeoglu, 2022). Sustainability consists of 

environmental, economic, and social dimensions, all of which are closely connected to 

energy (Kabeyi & Olanrewaju, 2023). This connection makes energy sustainability a 

crucial part of overall sustainability (Konara & Tokai, 2022). Extracting energy resources 

from the environment and releasing the energy waste back to the environment (Kabeyi & 

Olanrewaju, 2023) is one good example of the aforementioned connection. Since energy 

is essential for most activities, achieving energy sustainability is key to reaching broader 

sustainability goals.  

Electricity, produced from various energy sources such as thermal, nuclear, and 

renewables, is fundamental to modern life and technology. Figure 1 illustrates seven 

common sources used for electricity generation. Accurate forecasting of electricity 

demand is essential for energy sustainability, as it helps estimate future power needs from 

both renewable and non-renewable sources. Such predictions support efficient system 

operation, strategic planning, and decisions related to infrastructure, maintenance, and 

management (Zhang et al., 2018). Furthermore, an accurate electricity forecasting model 

can assist in various aspects, such as ensuring the efficient operation of daily activities, 

strategic planning of power systems, and addressing areas like management, 

maintenance, and infrastructure expansion. 

 

Figure 1: Common energy sources generate electricity 

A key goal of electricity forecasting is to ensure an adequate and efficient electricity 

supply that meets future demand. Electricity forecasting (Also known as “Electricity load 

forecasting”), which outputs predicted the total electricity demand for the corresponding 

duration, is classified into short-term (hours to a week), medium-term (weeks to a year), 

and long-term (over a year) (Somarathne et al., 2022). Short Term Load Forecasting 

(STLF) aids in electricity distribution and maintenance, handling short-term management 

and preventing short-term shortages, Mid-Term Load Forecasting (MTLF) supports 

power planning and market stability, while Long-Term Load Forecasting (LTLF) focuses 

on long-term infrastructure and technological growth (Shiwakoti et al., 2023). Among the 

aforementioned three forecasts, SLTF captures the impact of human behaviour on 

electricity consumption over various time frames, including hourly, daily, weekly, and 

monthly. Thus, SLTF is crucial in the energy sector, as accurate predictions of future 

electricity demand are necessary to ensure the reliable and efficient functioning of power 

systems (Zhang et al., 2018) as well as determine the requirements and help manage the 

balancing of renewable and non-renewable energy sources, which is part of energy 

sustainability.  



Ranju Kumari Shiwakoti, Piya Limcharoen and D.N.L.S. Uduwage 

Proceedings The 13th World Construction Symposium | August 2025  1262 

As a developing country, Sri Lanka is no stranger to blackouts and power cuts, with the 

energy sector struggling for decades due to twin crises: a capacity crisis and a financial 

crisis. One of the main causes of these blackouts is the decline in rainfall, a recurring 

issue each year when rainfall is below average. According to the Dailymirror (2022)Sri 

Lanka experienced its worst power cuts in March and September 2022 due to the country's 

failure to secure sufficient coal stocks for thermal power generation. However, it was 

severely impacted by inadequate hydro power generation due to below-average rainfall 

in 2022 (Dailymirror, 2022). This indicates that having an accurate STLF model to 

forecast electricity demand at least one day in advance has become crucial for maintaining 

the supply-demand balance in Sri Lanka. STLF models typically generate point forecasts 

for future load values, but there is an increasing demand for models that can provide 

probabilistic forecasts, such as those based on quantile regression (Chen & Ran, 2019). 

Probabilistic forecasting, unlike deterministic forecasting (point forecasting), 

acknowledges uncertainty by providing a range of possible outcomes with assigned 

probabilities, rather than a single point forecast. Two recent studies related to STLF in 

Sri Lanka have been conducted by Somarathne et al. (2022) and Abeysingha et al. (2021). 

Both studies used a maximum of 48 data points per day, representing half-hourly 

electricity demand for forecasting. However, the aforementioned studies did not mention 

any hyperparameter tuning during the training of their models. The performance of the 

model is based on the training dataset and its related hyperparameters. As a result, 

improving data points, selecting the appropriate model, and tuning related model 

hyperparameters such as input sequence length for predicting the output, network 

architecture, etc., can significantly enhance the accuracy of STLF. 

To address this gap, this study focuses on short-term electricity demand forecasting using 

a quarter-hourly (15-minutes) recorded demand dataset from Sri Lanka, providing more 

accurate STLF predictions. The study utilizes an extensive dataset spanning 

approximately four years (January 1, 2020, to March 31, 2024). As deep learning has 

shown its capability to capture more complex patterns, the aim of this study is to 

determine the most effective deep learning model to predict next-day electricity demand 

by comparing its accuracy with statistical models. Furthermore, this study considers fine-

tuning two important hyperparameter, namely, sequence length in order to optimize the 

model's predictive performance during the training phase. 

Below objectives are covered in this study to achieve the aim of this study: 

• To analyse and understand electricity demand patterns in the Ceylon Electricity 

Board (CEB) dataset from 2020 to 2024. 

• To identify key temporal trends and factors influencing energy demand for 

improved forecasting accuracy. 

• To evaluate and compare the predictive performance of different modelling 

approaches in order to determine the most effective model for future energy 

demand forecasting. 

2. LITERATURE REVIEW 

Statistical STLF models use past data like electricity load, weather, and calendar 

information. Statistical approaches encompass a variety of regression models, including 

linear regression, multiple regression, stepwise regression, logistic regression, and 

polynomial regression (Sudan, 2024). Additionally, methods such as Moving Average 
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(MA), Autoregressive Moving Average (ARMA), Autoregressive Integrated Moving 

Average (ARIMA), Autoregressive Integrative Moving Average Exogenous (ARIMAX), 

and Seasonal Autoregressive Integrated Moving Average (SARIMA) are well-known in 

the field of statistical prediction (Yadav, 2024). The models based on the aforementioned 

methods work well for patterns with statistical cycles in predictions, but they are less 

accurate for real-time load forecasting that includes non-cyclical data with dynamic 

fluctuations. They also struggle to handle the complex and non-linear nature of load 

consumption (Zuo et al., 2023). To address the limitations of statistical models in 

capturing the non-linear and complex patterns in electricity consumption, Artificial 

Intelligence (AI) techniques have been introduced. These AI techniques include Machine 

Learning (ML) and Deep Learning (DL) methods, which improve the accuracy of short-

term electricity demand forecasting. 

DL is a subset of ML that emerged to address more complex patterns in input data. Deep 

Neural Networks (DNNs) is a method in DL. It is based on artificial neural networks 

(ANNs), particularly a type known as Feedforward Neural Networks (FNNs), which 

process information in a unidirectional flow without any feedback loops. DNNs are neural 

network architectures that consist of multiple layers of ANNs. Multilayer Perceptron 

(MLP) is one of the simplest DL models, built on the structure of FNN using 

Backpropagation to learn patterns through hidden layers. Another important type of DNN 

is the Recurrent Neural Network (RNN), which processes information using feedback 

loops, allowing the network to retain information from previous inputs. This makes RNNs 

particularly well-suited for capturing patterns in sequential data. RNN-based 

architectures are commonly applied in tasks such as text processing, speech recognition, 

and video analysis. Variants like standard RNNs, Long Short-Term Memory networks 

(LSTMs), and Gated Recurrent Units (GRUs) have been developed to capture patterns 

better. LSTM, introduced by Hochreiter and Schmidhuber (1997) was designed to address 

limitations in RNNs, such as forgetting past data and the issues of vanishing and 

exploding gradients. GRUs were later developed as a simpler alternative to LSTMs, with 

fewer parameters but comparable performance (Rivas et al., 2025). LSTM makes it 

uniquely powerful for sequential data (Malashin et al., 2024), outperforming DNNs (no 

memory), RNNs (short-term memory), and even GRUs (less precise control).  

Both statistical and deep learning models can be effective for learning patterns in time-

based data, such as electricity demand. Another aspect of the SLTF models is high 

dependency on the calendar parameters such as year, month, day of the week, and hour, 

along with seasonal factors like holidays and special days. These are classified as 

deterministic variables. Weekday demand is generally higher and more stable due to 

industrial activities, while weekends and holidays experience lower consumption. To 

account for these variations, dummy variables are assigned to differentiate between 

weekdays, weekends, and holidays in predictive models (Ramanathan et al., 1997).  In 

addition to the aforementioned areas, SLTF models can be further fine-tuned using the 

hyperparameters. A hyperparameter is a parameter whose value is set before the learning 

process begins, and these values influence the learning process itself (Abeysingha et al., 

2021). A hyperparameter can be a sequence length, number of layers, etc., which directly 

influences the speed and performance of the learning process when training SLTF 

models. 
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3. RESEARCH METHODOLOGY 

This section provides a visualization of the electricity demand dataset, outlines the 

methods used to develop the forecast models, and provides a detailed explanation of the 

proposed electricity demand forecasting model. 

3.1 ELECTRICITY DEMAND DATASET 

The dataset, sourced from the CEB, contains electricity demand records spanning four 

years and three months, from January 1, 2020, to March 31, 2024. Figure 2 shows the 

overall electricity demand profile over four years and three months, illustrating the use of 

a 365-day rolling moving average to smooth annual trends. The blue line represents the 

actual recorded energy demand. The data is plotted every 15 minutes (a total of 96 data 

points per day), representing fluctuations throughout the day. The green line, representing 

the day-mean, an average of the 96 daily values, highlights seasonal (daily) trends by 

minimizing short-term day-to-day variations.  

Figure 2: Four years and three months overall demand profile 

The red line illustrates the linear regression trend, based on daily mean indicating the 

overall direction of energy demand over the 4 years period. Notably, from July 2022 to 

January 2024, a declining trend of demand is observed, primarily due to prolonged power 

cuts and political instability in Sri Lanka. During this period, the country faced an 

economic crisis, fuel shortages, and disruptions in electricity generation, all of which 

contributed to reduce energy consumption. 

Figure 3: Average demand profile for weekday and weekend patterns 
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On weekends, residential electricity demand exhibits unpredictable fluctuations due to 

varying human activities, posing challenges for accurate forecasting. In contrast, 

weekdays demonstrate more stable demand patterns, particularly during midday and 

evening hours. Despite these variations, electricity consumption during late-night and 

early-morning hours remains relatively consistent across both weekdays and weekends, 

as illustrated in Figure 3. The details in Figure 3 infer the demand fluctuations, peak usage 

periods, and potential differences in energy consumption trends between regular working 

days and weekends. 

3.2 MODELS 

This subsection outlines the methods employed in the study to develop an effective deep 

learning framework for predicting next-day electricity demand. It begins with a brief 

overview of three statistical methods, followed by detailed descriptions of two selected 

deep learning methods, including an explanation of their underlying operating principles. 

The statistical methods, includes Linear regression, Polynomial regression, and Fast 

Fourier Transform. These methods help in analysing the trends and seasonality in the 

electricity demand data. The deep learning methods includes Multilayer Perceptron and 

Long Short-Term Memory which are known for their ability to capture complex patterns 

and long-term dependencies in time-series data, making them highly effective for 

accurate forecasting. 

3.2.1 Fast Fourier Transform (FFT) 

In frequency analysis, the FFT is employed to identify common frequency components 

between two time series. As an optimized form of the discrete Fourier transform, FFT 

detects periodic patterns and their relative strengths within the data. It decomposes input 

signals into smaller frequency components, making it easier to recognize similarities in 

the frequency domain. The Fourier transform, a mathematical approach, converts time-

domain signals into their frequency-domain equivalents, representing complex signals as 

a sum of simpler harmonic frequencies (Yemets et al., 2025). 

3.2.2 Linear Regression (LR) 

Regression analysis is a key statistical method for understanding the relationship between 

a dependent variable and independent variables. Widely used across scientific fields, it is 

especially valuable in business and economics for identifying causal links. This method 

involves modelling relationships and estimating parameters to develop a predictive 

equation. Simple linear regression focuses on how one independent variable influences a 

dependent variable, aiding in trend analysis and prediction (Patil & Patil, 2021). The 

formula for linear regression is as follows (see Equation 1), 

y=𝛽0 + 𝛽1𝑥 +ε  (Equation 1) 

3.2.3 Polynomial Regression (PR) 

Polynomial regression is a form of regression analysis that uses an nth degree polynomial 

to model the relationship between dependent and independent variables. It is a specific 

variation of Multiple Linear Regression (MLR) where the polynomial equation captures 

the curved interactions between these variables (Patil & Patil, 2021). The number of 

degrees represents the curve’s flexibility. It is useful when the data has a non-linear 

relationship but can be approximated by polynomial function. The model of polynomial 

is given below (see Equation 2): 
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𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2 +⋯+ 𝛽ℎ𝑥

ℎ + 𝜀  (Equation 2)                                                                       

3.2.4 Multilayer Perceptron (MLP) 

A multilayer perceptron represents a type of artificial neural network that incorporates 

several layers of interconnected units, often referred to as perceptron or neurons. 

Commonly utilized in supervised learning scenarios, such as classification and regression 

tasks, an MLP is visually depicted in Figure 4 and is composed of the following key 

components. 

 

 

 

 

 

 

Figure 4: Multilayer perception model 

The input layer receives the data, with each node representing a feature of input. Hidden 

layers process the data through neurons that learn complex patterns, and the number of 

layers and neurons influences the model's learning capacity. The output layer generates 

predictions based on the problem, with the number of nodes matching the output 

categories. Neurons process inputs using an activation function (see Equation 3) that can 

introduce non-linearity. Weights and biases control the strength of neuron connections 

and adjust during training to minimize prediction errors (Sakhtiyani et al., 2022). The 

model is trained through backpropagation, adjusting weights and biases iteratively to 

reduce the loss function, which measures performance.  

𝑎𝑗 = 𝑓(∑(𝑤𝑖𝑗 ∗ 𝑥𝑖) + 𝑏𝑗)  (Equation 3)                                                                                     

3.2.5 Long Short-Term Memory (LSTM) 

The Long Short-Term Memory network is a widely used deep neural network that 

features specialized components known as memory blocks within its recurrent hidden 

layer. Each memory block is equipped with an input gate, which regulates the flow of 

input activations into the memory cell, and an output gate, which manages the flow of 

cell activations to the rest of the network (Shiwakoti et al., 2024). LSTM networks map 

an input sequence (x1,x2……xn) and output sequence (y1,y2,……yn). 

3.3 HYPERPARAMETERS 

This study focuses on selecting the best model and corresponding hyperparameters for 

predicting next-day power consumption. A suitable model is one that accurately captures 

data patterns, avoids both overfitting and underfitting, and keeps the model structure 

simple and efficient. The sequence length refers to the number of previous days used as 

input to the model in order to predict the next day’s electricity consumption. It is a key 

hyperparameter in this study because selecting the right sequence length is important for 

capturing patterns, seasonal trends, and variations in the data. If the sequence length is 

too short, the model may miss important long-term dependencies, reducing prediction 

accuracy. On the other hand, if it is too long, it can introduce noise and increase model 
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complexity. Therefore, optimizing sequence length helps the model effectively learn 

time-based patterns, which improves both accuracy and efficiency. 

3.4 PROPOSED MODEL 

The proposed workflow, illustrated in Figure 5, includes five key stages: (1) data 

preprocessing (handling outliers, separating training and testing data, and constructing a 

normalization model from the training set), (2) preparing sequences based on varying 

sequence lengths, (3) model training, (4) renormalising the predicted results, and (5) 

performance evaluation. Data preprocessing is essential for building an accurate 

forecasting model. It includes handling outliers and missing values using forward-filling, 

splitting data into training and testing sets, and applying min-max normalization based 

on the training data. Normalization is later reversed for interpretation. These steps ensure 

data consistency, fair evaluation, and improved model accuracy. 

The original 15-minute interval electricity demand data are aggregated into daily 

electricity demand. The training set includes data from January 1, 2020, to December 31, 

2022, while the testing set comprises data from January 1, 2023, to March 31, 2024. To 

prepare the sequences for training and testing, a sliding window process with a window 

size equal to the sequence length was applied to the data for each model. The forecasting 

models for experiments include both statistical models (LR, PR with degree 2 (PR2), 

degree 6 (PR6), and FFT) and deep learning models (MLP and LSTM). These models are 

trained using the pre-processed dataset. During training, each method follows a separate 

learning process to adjust internal parameters and improve predictive accuracy. The 

optimal sequence length hyperparameter is determined by evaluating multiple models 

across different sequence lengths for each forecasting approach. Once the internal 

parameters of each model have been optimized, the models are evaluated using the test 

dataset. Denormalization is applied to convert the predicted values back to their original 

scale. Each model is evaluated using Mean Absolute Percentage Error (MAPE), Mean 

Absolute Error (MAE), and Root Mean Square Error (RMSE) to assess forecasting 

accuracy. MAPE shows relative error in percentages, MAE captures average error, and 

RMSE highlights larger deviations. The model with the lowest values across these metrics 

is deemed best for future electricity demand forecasting. 

This paragraph outlines the hyperparameters used for each model. For Linear Regression 

(LR) and Polynomial Regression (PR), separate models are built using a fixed number of 

previous days (sequence length) to predict next-day power consumption. LR has no 

additional hyperparameters beyond sequence length, while PR treats the polynomial 

degree as a key hyperparameter, using degrees 2 and 6 in the experiments. The FFT was 

applied to extract frequency-domain features from the time series. In the experiments, 

separate FFT coefficients were extracted and used for each next-day prediction. The 

coefficients were computed using only data within the sequence length. Apart from the 

sequence length, no additional hyperparameters were involved in the FFT process. 

The proposed DL models, both MLP and LSTM, use simple architectures to minimize 

complexity and reduce overfitting risk. The MLP consists of three fully connected dense 

layers (32, 16, and 1 units) with Tanh, ReLU, and Linear activations. The LSTM model 

includes one LSTM layer (32 units) followed by two fully connected dense layers (16 and 

1 units) using Tanh, ReLU, and Linear activations. Tanh is used for its effective non-

linear transformation. From the training data, 10% was allocated for validation and 90% 

for model training. The model was trained using a batch size of 32, the Adam optimizer, 
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and MSE as the loss function. Early stopping with a patience of 50 epochs was used to 

restore the best weights based on validation loss, allowing the number of training epochs 

to adjust dynamically for optimal performance. 

 

Figure 5: Proposed model for electrical demand forecasting 

4. RESULTS AND DISCUSSIONS 

This section presents and analyses the results of the study. Statistical and DL models were 

evaluated using sequence lengths based on weekly intervals. The complete set of 

sequence lengths is shown in Figure 6. Key lengths such as 7, 14, 21, and 28 days, along 

with monthly intervals, are detailed in Tables 1 to 3, presenting MAPE, MAE, and RMSE.   

Figure 6: Demand prediction MAPE results for various sequence lengths (weekly) 

The lowest error for each sequence length is highlighted in bold. Sequence length plays 

a significant role in forecasting accuracy. While longer sequences capture more temporal 

patterns, overly long ones may introduce noise and reduce model performance. 
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Table 1: Mean Absolute Percentage Error (MAPE) results of the models using different sequence lengths 

(days) 

Models 7 14 21 28 56 84 112 140 168 196 224 252 280 308 336 364 

LR 11.61 9.14 8.63 8.33 8.23 8.62 8.26 8.11 8.41 8.68 9.02 9.31 9.25 9.51 9.97 10.74 

PR2 12.43 8.25 8.08 8.14 7.82 8.13 8.25 7.9 7.87 8.09 8.14 8.05 8.22 8.78 9.05 9.36 

PR6 199.24 32.08 27.17 18.41 10.47 9.76 8.76 8.21 8.24 8.15 8.04 7.83 7.37 7.43 7.91 7.76 

FFT 15.21 11.28 9.29 8.2 7 6.81 6.72 6.59 6.57 6.64 6.61 6.55 6.57 6.52 6.54 6.6 

MLP 4.13 3.46 3.72 3.78 3.97 3.82 3.65 3.86 4.27 3.56 3.96 4.44 3.98 4.39 4.16 4.66 

LSTM 4.26 3.6 3.76 3.82 3.45 3.89 3.98 3.15 3.25 3.61 3.16 3.23 3.32 3.07 3.28 3.1 

Table 2: Mean Absolute Error (MAE) results of the models using different sequence lengths (days) 

Models 7 14 21 28 56 84 112 140 168 196 224 252 280 308 336 364 

LR 180.36 140.58 132.11 127.57 126.38 132.65 127.8 127.42 132.78 138.79 144.69 149.79 153.11 162.38 174.26 193.45 

PR2 200.56 127.9 124.63 125.13 119.89 124.8 127.22 122.65 122 126.15 126.48 126.1 133 146.49 154.96 165.35 

PR6 3257.73 522.39 434.71 297.26 165.22 152.28 135.47 127.41 127.78 125.9 123.94 120.44 114.19 118.26 128.72 131.51 

FFT 254.07 188.97 155.61 136.84 114.32 109.53 107.09 105.1 104.27 105.43 104.26 102.84 104.3 105.72 108.16 111.51 

MLP 63.5 52.29 57.25 59.17 61.32 58.78 55.91 60.75 67.94 56.16 62.56 69.23 62.63 71.18 68.22 78 

LSTM 64.74 55.44 58.27 59.88 52.78 59.97 60.63 48.73 50.47 56.45 49.23 51.18 53.8 49.78 53.36 51.48 

Table 3: Root Mean Square Error (RMSE) results of the models using different sequence lengths (days) 

Models 7 14 21 28 56 84 112 140 168 196 224 252 280 308 336 364 

LR 210.32 168.7 163.06 157.66 154.1 158.34 153.8 150.3 156.29 164.09 174.08 181.75 183.46 188.64 199.35 218.85 

PR2 247.61 160.02 154.99 158.29 149.77 155.65 154.03 147.7 145.94 148.92 151.93 149.23 148.89 160.12 167.93 179.24 

PR6 4224.31 676.93 523.08 364.82 206.67 187.95 166.78 154.65 155.03 156.96 157.16 154.53 150.78 151.89 156.6 151.8 

FFT 280.09 216.06 185.43 169.08 147.78 143.81 142.72 140.49 140.09 141.87 141.02 140 141.84 143.02 145.93 149.68 

MLP 95.35 84.31 87.91 86.32 86.98 89.01 83.79 84.35 92.61 82.22 84 92.79 86.83 93.31 88.17 100.57 

LSTM 96.51 85.62 88.8 88.86 84.31 89.75 88.87 78.38 79.8 81.96 75.83 76.17 76.48 74.95 82.99 77.29 

According to the results across all metrics, Sri Lanka's relatively stable climatic 

conditions, typical of a tropical country, cause little seasonal change in electricity 

demand, which improves forecasting accuracy. As shown in Figure 6, after using a 

sequence length of 14 days (two-week cycle), most forecasting models perform steadily 

up to 52 weeks. This suggests that weekly past data is effective for next-day demand 

prediction, helping with better energy planning and management in Sri Lanka. 

In addition to determining the optimal sequence length, this study compared deep learning 

models with baseline statistical approaches. As shown in Figure 6, deep learning models 

outperformed statistical models by better capturing complex demand patterns. While the 

best statistical model (FFT) achieved a MAPE of 6.49%, the least accurate deep learning 

model (MLP) performed better, with a MAPE of 5.04%, highlighting the advantage of 

deep learning in forecasting accuracy. While FFT had the lowest error among statistical 

models, LSTM achieved the best overall accuracy with a MAPE of 2.89% at a 294-day 

sequence length. Statistical models offer simplicity and interpretability, but they fall short 

in accuracy. The proposed deep learning models, despite their simple architectures, 

significantly outperformed traditional statistical approaches. 
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4.1 STATISTICAL MODEL 

In Figure 6, the suitable sequence length for statistical models is around 139 days (20 

weeks). This means that the model learning from 20 weekly cycles provides the best 

results for statistical forecasting models. Interestingly, FFT provides the best performance 

among statistical models. FFT achieves a MAPE of 6.49% at a sequence length of 273 

days (39 weeks). PR improves upon LR by capturing some non-linear trends using PR2 

and PR6, but it still struggles with complex seasonal patterns. In contrast, FFT effectively 

captures recurring demand cycles, making it the most accurate of the four. As illustrated 

in Figure 7, the blue line shows actual demand, while the red line shows FFT predictions 

from January 2023 to March 2024. 

 

 

 

 

 

 

 

 

 

 
Figure 7: Demand prediction using FFT: using previous 273 days (39 weeks) 

4.2 DEEP LEARNING MODELS 

The results indicate that deep learning models significantly outperform statistical ones by 

capturing demand patterns more effectively. As shown in Figure 6, these models begin 

identifying patterns with just 14 days of input. This trend is also reflected across all error 

metrics in Tables 1 to 3, where deep learning models have more stable MAPE values. 

While LR and PR face difficulties with longer sequences, MLP performs more effectively 

with shorter sequences, especially those less than 140 days (20 weeks). However, LSTM 

excels with longer sequences, demonstrating a stronger ability to learn complex patterns 

compared to MLP. 

The results reveal that LSTM achieves superior performance due to its ability to capture 

long-term dependencies and sequential patterns, making it better suited for modelling 

forecasting model. The LSTM model's performance significantly improved with 

sequence length extended, reaching optimal results at a sequence length of 294 days (42 

weeks). Under these conditions, the LSTM achieved a MAPE of 2.89%. Figure 8 displays 

the prediction results, where the blue line represents actual demand data, and the red line 

shows LSTM model predictions from January 2023 to March 2024 (the testing data 

duration). 
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Figure 8: Demand prediction using LSTM: using previous 294 days (42 weeks) 

5. CONCLUSIONS 

Electricity is a form of energy generated by the flow of electric charge, used to power 

various devices and systems. As a key energy carrier, it plays a critical role in energy 

sustainability by ensuring that energy production and consumption support sustainable 

development throughout their lifecycle. This involves maintaining a secure and equitable 

energy future for both current and future generations, without compromising 

environmental or societal well-being. To advance energy sustainability in Sri Lanka, this 

study develops a STLF model using a quarter-hourly (15-minute) electricity demand 

dataset obtained from the CEB. The model aims to accurately predict day-ahead 

electricity demand across Sri Lanka. 

Initially, this study examines statistical models (LR, PR, and FFT) alongside deep 

learning models (MLP and LSTM) for short-term load forecasting. Using 4 years and 3 

months of demand data from the CEB, each model was trained with different sequence 

lengths to forecast day-ahead electricity demand from January 2023 to March 2024. 

Among the statistical methods, FFT delivered the best performance with a MAPE of 

6.49%. However, deep learning models, particularly LSTM, significantly outperformed 

these techniques, achieving an impressive MAPE of just 2.89%. The results of this study 

show that the LSTM outperformed the baseline model, FFT, providing the most accurate 

short-term load forecasts. This indicates that the LSTM model is highly effective for 

electricity demand forecasting, especially for next-day predictions, even with simple 

model design of one LSTM layer (32 units) followed by two fully connected layers (16 

and 1 units) using Tanh, ReLU, and Linear activations. The developed model can support 

Sri Lanka in optimizing renewable energy use, lowering operational costs, and 

maintaining grid stability. Accurate demand forecasting enhances energy management 

and long-term sustainability. However, the study is limited by not including weather-

related variables, which could improve prediction accuracy and are suggested for future 

work. 
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