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ABSTRACT 

Accurately predicting construction project costs remains challenging due to their 

dynamic and complex nature. While traditional methods address most cost components 
based on resources it consumes or how such activities perform, certain elements like fuel 

often rely on expert judgment for validation or adjustment, as traditional methods 
frequently fail to capture all influencing project parameters. This research explores the 

feasibility of utilizing supervised Machine Learning (ML) techniques to predict these 

volatile cost elements, focusing specifically on fuel, a key project cost. The study 
addresses key gaps identified in the literature, particularly the need for models that can 

manage the uncertainty of specific cost elements and incorporate a broader range of 

influencing factors, including macroeconomic parameters. By leveraging historical data 

extracted from Enterprise Resource Planning (ERP) systems, alongside additional 

project attributes such as average fuel price and construction cost indices, this study 
demonstrates a novel, data driven approach to cost estimation. The methodology 

involved data preprocessing to ensure quality and consistency, followed by feature 

selection to identify the most relevant attributes influencing fuel cost. Several supervised 
ML models were compared, to identify model with superior performance. The chosen 

model was further optimized through iterative refinement techniques, to enhance its 
predictive accuracy and stability. The findings highlight the potential of supervised ML 

to revolutionize construction cost estimation practices, offering a more data driven, 

accurate, and efficient method for managing project budgets realistically.  

Keywords: Cost Estimation; Data Analytics; Enterprise Resource Planning; Machine 

Learning; Predictive Modelling. 

1. INTRODUCTION 

The cost of a construction project is a complex amalgamation of various elements. Among 

the diverse tools available for detailing and deriving these cost elements, the Bill of 

Quantities (BOQ) is widely recognised and commonly used. Standard industry practices 

define the structure and item list within a BOQ, fostering a unified approach across 
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different projects. Estimators typically derive the cost of each individual element through 

diverse methodologies, including resource-based, time-based, methodology-based, or 

expert opinion-based approaches. For certain elements such as energy, water, and fuel 

consumption, as well as staffing, plant, machinery, security, safety protocols, tools, 

scaffolding, and communication, estimators often rely heavily on expert judgment to 

adjust values based on historical data and professional experience to achieve more 

realistic figures. 

However, this reliance on expert judgment and historical extrapolation presents 

significant limitations, particularly when confronted with the inherent variability of 

certain cost components. As observed by Elhag et al. (1998), traditional estimation 

methods frequently overlook critical contextual variables like contract type, site-specific 

challenges, and market volatility. Similarly, Hashemi et al. (2020) emphasised the 

inadequacy of linear, rule-based techniques in handling uncertain and interdependent cost 

determinants. The challenge of accurately forecasting these volatile elements is illustrated 

in Figure 1. This scatter plot, which spans a wide range of values for fuel cost percentage 

across 82 construction projects completed between 2008 and 2024, vividly demonstrates 

the substantial fluctuations and inherent unpredictability, underscoring the limitations of 

relying solely on traditional methods. 

 

 

Figure 1. Fuel cost percentage by project type 

To address these challenges, contemporary research increasingly advocates for data-

driven approaches, particularly those based on ML. Predictive analytics and supervised 

ML models offer superior accuracy and flexibility compared to deterministic models. 

These models perform exceptionally well when trained on large, structured datasets, as 

they can uncover complex, nonlinear relationships among multiple variables that 

influence costs. Integrating ML techniques into the cost forecasting framework not only 

enhances the accuracy of estimates but also improves decision-making capabilities 

throughout the project lifecycle. As noted by Miranda et al. (2022), predictive analytics 

enables proactive budgeting, scenario analysis, and dynamic cost control, especially at 

the early stages of a project where uncertainty is highest. 
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This study adopts supervised ML techniques due to their proven effectiveness in 

predictive modelling when historical labelled datasets are available. Supervised ML 

involves learning a function that maps input variables to a known output variable, making 

it well-suited for tasks such as cost estimation, where both independent features and target 

cost elements are defined (Jordan & Mitchell, 2015). In contrast, unsupervised ML 

algorithms are typically employed for exploratory purposes, such as clustering or 

anomaly detection, where the output is not known in advance. The current study leverages 

historical project data with clearly defined cost outcomes specifically fuel expenditure 

which enables the use of supervised learning for accurate cost prediction. Moreover, 

supervised methods such as Random Forest and Gradient Boosting have demonstrated 

superior performance in construction cost forecasting due to their ability to model 

complex, non-linear relationships and handle high-dimensional data (Hashemi et al., 

2020; Abed et al., 2022). Accordingly, supervised ML was selected as the most 

appropriate methodological approach to fulfil the study's objective of estimating volatile 

cost components using structured ERP datasets. 

This research contributes to the ongoing transformation in construction cost estimation 

by evaluating the applicability of supervised ML for predicting fuel expenditure. The 

motivation for focusing on fuel costs stems from their demonstrated variability across 

different project types and durations, as highlighted in Figure 1. This variability provides 

an ideal test case for assessing the robustness and predictive power of ML models, not 

only for fuel but also for other volatile cost elements. Crucially, this study addresses the 

identified gaps in existing literature by incorporating both project-specific and broader 

economic variables, such as average fuel prices and Construction Industry Development 

Authority (CIDA) indices, which have often been neglected in previous ML cost 

estimation models. Through a systematic analysis of historical project data from an ERP 

system, this study evaluates the feasibility of utilising a supervised ML model to 

dynamically estimate the percentage of fuel costs. This process aims to validate the 

concept of employing ML models across various other cost elements and suggests wider 

implications for estimating similarly volatile components, moving beyond reliance on 

subjective estimations and contributing to more accurate, dynamic, and comprehensive 

cost management strategies. 

2. LITERATURE REVIEW 

The field of construction cost estimation has traditionally relied on methodologies 

developed over time, such as those based on resources, time, or expert opinion. However, 

recent years have witnessed the emergence of new concepts, notably Machine Learning 

(ML), which offer promising avenues for predicting construction project costs with 

greater accuracy and efficiency. 

Early applications of ML in construction cost forecasting often utilised simpler regression 

techniques. For instance, Prasetyono et al. (2021) suggested the application of linear 

regression for forecasting construction costs in residential building projects, devising a 

model to predict future housing construction costs based on the year. Similarly, Suchetha 

et al. (2023) underscored the significance of ML in accurately predicting home costs to 

mitigate losses, asserting that linear regression yielded the highest accuracy among other 

methods like gradient boost and XGBoost regression. Expanding on regression 

techniques, Mahamid (2011) emphasised the development of early cost estimating 

models for road construction projects using multiple regression, formulating 11 models 
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with high coefficients of determination (R2 ranging from 0.92 to 0.98), demonstrating 

strong correlation with actual data and applicability for initial project stages. 

More advanced ML techniques, particularly ensemble methods and deep learning 

architectures, have shown considerable promise in predicting construction costs. A 

systematic review by Abed et al. (2022) highlighted the growing adoption of ML methods 

in forecasting construction costs and underscored the superiority of ensemble learning 

models in managing nonlinear relationships and high-dimensional datasets. Recent 

advancements include models integrating deep neural networks (DNN) with validation 

units to improve predictive accuracy and interpretability in cost forecasting (Saeidlou & 

Ghadiminia, 2024).  

Despite these advancements, several critical research gaps persist in the domain of 

construction cost estimation using ML. While most ML approaches focus on project-

specific attributes such as labour, materials, and equipment, they often neglect broader 

economic variables such as inflation rates, price volatility, and market demand. Salleh et 

al. (2023) emphasised that integrating these external factors could significantly improve 

the adaptability of ML models to real-world conditions. This oversight limits the models' 

ability to provide holistic and accurate cost forecasts under fluctuating market conditions. 

A significant challenge acknowledged in the literature is the difficulty in establishing a 

universally applicable set of attributes due to the unique characteristics of each building 

project. Salleh et al. (2023) observed that construction cost data were often fragmented, 

inconsistent, or incomplete, severely limiting the training of reliable predictive models. 

This underscores an urgent need for comprehensive and accessible data repositories to 

support the development of robust ML-based cost estimation tools. 

There is an absence of ML models explicitly designed to predict individual building cost 

elements, largely due to the unavailability of rich, high-quality datasets for these specific 

components. While some studies, like Katyare et al. (2023) advocated for ML techniques 

to predict fuel costs by integrating IoT-based sensing data, the broader application of ML 

to other inherently volatile cost elements (like utilities or plant costs) remains 

underexplored. The discourse by Katyare et al. (2023) also highlighted challenges 

stemming from the lack of digitisation in the construction industry, which complicates 

the use of real-time data for ML applications. 

Many existing models limit the number of variables considered due to concerns about 

manageability. However, expanding the feature set using techniques such as feature 

selection and dimensionality reduction could significantly enhance model performance 

without introducing excessive complexity. Salleh et al. (2023) identified an exhaustive 

compilation of 68 ranked attributes influencing building project costs but acknowledged 

that the applicability and relevance of these attributes can vary significantly across project 

types, affecting the generalizability and accuracy of ML models. 

In summary, addressing these identified research gaps would significantly advance the 

domain of construction cost estimation. It would enable the creation of more accurate, 

dynamic, and comprehensive ML models that align with the evolving demands of the 

construction industry (Salleh et al., 2023; Katyare et al., 2023). The collaborative effort 

to overcome these challenges would pave the way for more effective cost management 

strategies, ultimately contributing to the enhanced sustainability and profitability of 

construction projects.  
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3. METHODOLOGY 

This chapter presents the methodological framework adopted to predict the fuel cost of 

construction projects, utilizing ML techniques. This study followed a systematic 

approach that commenced with data extraction, followed by preprocessing, feature 

selection, and model evaluation. Once the best-performing model was identified, it 

underwent further optimisation and refinement for enhanced accuracy. Figure 

2graphically illustrates the sequential processes involved in this study, from data 

acquisition to model deployment. 

Google Colaboratory (Colab), a cloud-based computational environment, was utilised in 

this study for the development, training, and evaluation of ML models. As demonstrated 

by Ray et al. (2021), Colab enables real-time data processing, analysis, and visualisation 

within a browser-based interface. The platform supports the full ML workflow, from 

importing datasets to training classifiers and evaluating model performance, without the 

constraints of local hardware limitations. By executing code on Google’s cloud servers, 

Colab provides access to advanced computational resources, including Graphics 

Processing Units (GPUs) and Tensor Processing Units (TPUs), thereby significantly 

enhancing model training efficiency and scalability. 

 

Figure 2. Proposed methodology for developing an ML model 

3.1 DATA EXTRACTION 

The initial phase of the research involved extracting historical data from the ERP system 

of a construction organisation. The extracted data comprised detailed records from 82 

projects undertaken between 2008 and 2024. These records included various cost 

elements, such as fuel, labour, and machinery. Additionally, further project attributes not 

directly associated with the ERP-extracted data were incorporated 

The initial phase of the research involved extracting historical data from the ERP system 

of a construction organisation. The extracted data comprises detailed records from 82 

projects undertaken between 2008 and 2024. These records include various cost elements, 

such as fuel, labour, and machinery. Additionally, further project attributes were 

incorporated that were not associated with the extracted data.  

The primary variables extracted from the ERP systems include: 

• Project identification details: project number, project name 

• Cost data: percentage of fuel cost, project cost 

• Time-related data: time period of the project, start date of the project 

The study incorporated additional data into the dataset related to the project, such as: 

• Average fuel price for the duration of the project,   

• Construction cost indices for the duration of the project published by the CIDA,   

• Project type (e.g., residential, commercial, road, etc.),   
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• Project spread (horizontal or vertical),   

• Height category (high-rise or low-rise),   

• Type of crane (mobile crane or tower crane),   

• Source of concrete (on-site ready-mix or externally sourced),   

• Source of energy (generator power or electricity powered) 

This structured data enabled the creation of a robust dataset, serving as the foundation for 

all subsequent phases of analysis. It enabled the development of a comprehensive dataset 

that incorporates macroeconomic and project-related attributes not previously found in 

research. Considering its generation from ERP records at the organisational level, it 

provides a standardised set of data that can be utilised across various projects within the 

organisation. Available information at the organisational level facilitated the analysis of 

different parameters derived from the dataset, as well as the inclusion of additional 

parameters that may influence fuel costs. 

3.2 DATA PREPROCESSING 

Given the complexity and heterogeneity of construction project data, preprocessing is a 

vital component of the methodological process. Data preprocessing ensures that the 

dataset is clean, consistent, and ready for analysis. This process involved several key tasks 

as follows: 

3.2.1 Handling Missing Values  

The dataset was examined for missing or incomplete data. Missing values were addressed 

using appropriate imputation methods. 

3.2.2 Encoding Categorical Variables 

ML models typically require all input features to be in numerical format. Therefore, 

categorical variables such as project type (residential, commercial, road) were 

transformed into numerical format through one hot encoding. This technique was chosen 

to avoid imposing an ordinal relationship between categories that are inherently non-

ordinal. 

3.2.3 Scaling and Normalization 

To ensure that no single feature disproportionately influences the model, numeric features 

were normalized using the min max scaling method. This transformation scaled all 

numeric features to a common range, typically between 0 and 1, facilitating more 

effective model training, particularly for gradient-based algorithms such as Gradient 

Boosting Regressors. 

3.3 FEATURE SELECTION AND VALIDATION  

To enhance predictive accuracy and reduce the model's dimensionality, a feature selection 

process was applied before training. This process aimed to identify the most relevant 

project attributes that significantly influence the percentage of fuel cost. A correlation 

matrix was generated to quantify the linear relationships between all numerical variables 

and the target variable. Pearson’s correlation coefficient was used due to its effectiveness 

in measuring the strength and direction of linear dependencies. 

Initially, features with a correlation coefficient above a predefined threshold were 

selected. Those with negligible or inverse relationships were excluded to reduce noise 
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and avoid overfitting. Beyond purely statistical criteria, domain expertise was applied to 

retain variables known to influence fuel consumption, such as Contract Sum, CIDA 

Indices, Fuel Price, and Crane Type, even if their correlation strength was moderate. This 

hybrid approach ensured that variables with practical relevance were not overlooked 

solely due to statistical filtering.  

Figure 3 visually represents the correlation values between selected parameters and the 

percentage of fuel cost.  

 

Figure 3: Correlation heatmap for feature selection 

Table 1presents the properties and correlation values of each parameter in a tabular 

format, providing a clear overview of the selected features. This multi-step process 

resulted in a refined set of features that were subsequently used to train the ML models. 

Table 1: Feature Selection. 

Feature name Type Preprocessing 

applied 

Correlation Category 

Free Material Numerical Normalized 0.621 Strong 

Source of Energy Categorical One hot encoded 0.541 Strong 

High-Low Rise Categorical One hot encoded 0.492 Strong 

Project Type Categorical One hot encoded 0.486 Strong 
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Feature name Type Preprocessing 

applied 

Correlation Category 

Project Spread Categorical One hot encoded 0.468 Strong 

Concrete Type Categorical One hot encoded 0.361 Strong 

Fuel Price Numerical Normalized 0.151 Weak 

CIDA Indices Numerical Normalized 0.143 Weak 

Crane Type Categorical One hot encoded 0.066 Weak 

Contract Sum Numerical Normalized 0.046 Weak 

3.4 DATA PARTITIONING 

The researchers partitioned the dataset into training and testing subsets to facilitate the 

evaluation of model performance. The split was performed as follows: 

• Training set: 80% of the dataset was allocated to training the ML models 

• Testing set: The remaining 20% was reserved for testing and evaluating the 

generalisation capabilities of the trained models 

A random state of 42 was used during the split to ensure that the partitioning was 

reproducible, which is critical for maintaining the integrity and consistency of the analysis 

across different iterations. 

3.5 MODEL SELECTION AND TRAINING 

Three supervised ML models were selected for experimentation based on their relevance 

to regression tasks, their ability to capture complex relationships, and their successful 

application in construction cost prediction research. These models, all part of the 

supervised learning paradigm given the availability of labelled historical data for training, 

include: 

• Random Forest Regressor (RFR) is an ensemble learning method that operates 

by constructing multiple decision trees during training. It is particularly adept at 

handling datasets with both categorical and continuous variables, and it 

mitigates overfitting through its ensemble approach. 

• Gradient Boosting Regressor (GBR) is another ensemble technique. Gradient 

Boosting constructs models sequentially to minimise prediction errors by 

combining weak learners. It is capable of capturing complex, non-linear 

relationships within the data. 

• Support Vector Regressor (SVR) was included as it is effective for datasets with 

a smaller number of samples and works well for non-linear relationships through 

the application of kernel functions. 

3.6 MODEL EVALUATION 

Each model was evaluated using a set of standard performance metrics: 

• Mean Absolute Error (MAE) measures the average magnitude of the errors in a 

set of predictions, without considering their direction. 

• Mean Squared Error (MSE) quantifies the average squared difference between the 

predicted and actual values, penalising larger errors more than smaller ones. 
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• R-squared (R²) provides a measure of how well the regression model captures the 

variance in the data. A higher R² indicates a better fit. 

The model that exhibited the best performance metrics was selected as the final model 

for further optimization. The results of each model's performance are presented in Table 

2.  

Table 2: Model performance 

Model Name MAE MSE R-squared 

R1 SVR 0.05230 0.002870 -20.08 

R2 GBR 0.00861 0.000199 -0.464 

R3 RFR 0.00848 0.000197 -0.446 

3.7 MODEL OPTIMISATION AND ITERATIVE REFINEMENT 

The selected model, identified as R3 (referring to the initial baseline Random Forest 

Regressor), was further optimised through a progressive series of strategies, culminating 

in version R8, as detailed in Table 3. R3 served as a baseline with default settings. R4 

improved data partitioning through iterative random state search. R5 integrated 5-fold 

Cross-Validation (CV) for robust performance evaluation. R6 introduced prediction 

uncertainty via Confidence Intervals (CI) derived from K-Fold inference. R7 applied 

hyperparameter tuning using Randomised Search CV to optimise model architecture, 

significantly reducing error. Finally, R8 built on R7 by enforcing fold-specific 

preprocessing during K-Fold prediction, achieving the tightest confidence interval and 

highest prediction stability. 

Table 3: Optimisation techniques used in Model R3 to R8 

Model 

name 

Optimisation techniques applied Purpose/Benefit 

R3 Baseline model using a simple train-test 

split with default RFR parameters. 

Establishes a reference point for 

model performance with no 

tuning. 

R4 Conducted randomised search over 

multiple random states (e.g., 0 to 99) for 

train-test split; selected split based on best 

performance. 

Enhances generalisability by 

identifying a stable and optimal 

data partition. 

R5 Integrated 5-fold CV during evaluation of 

the R4 model. 

Improves performance reliability 

by mitigating variance across 

different training subsets. 

R6 Extended R5 by incorporating fold level 

predictions to estimate CI for new project 

predictions. 

Introduces prediction uncertainty, 

enhancing interpretability and 

decision confidence. 

R7 Applied Randomised Search CV for 

hyperparameter tuning of RFR (e.g., 

n_estimators, max_depth, 

min_samples_split, min_samples_leaf, 

max_features, bootstrap) using 5-fold CV. 

Achieves optimal model 

architecture, minimising error 

and maximising R². 
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Model 

name 

Optimisation techniques applied Purpose/Benefit 

R8 Maintained R7 hyperparameters; added 

fold-specific preprocessing within each K-

Fold iteration to generate predictions. 

Delivers the most refined and 

stable inference process with the 

tightest CI and lowest variance, 

while preventing data leakage. 

3.8 PREDICTIVE MODELLING FOR FUTURE PROJECTS 

Once the models were optimised, they were utilised to predict future cost elements, with 

a specific focus on fuel consumption for new projects. The models utilised project-related 

attributes, including contract sum, project type, and fuel price, to generate predictions that 

inform project planning and budget allocation. 

4. RESULTS/ANALYSIS AND DISCUSSION 

4.1 RESULTS OVERVIEW 

This research aimed to develop an accurate supervised ML model for predicting fuel cost 

percentages in construction projects. Following the development of the best-performing 

model, as detailed in the methodology chapter, this section describes the optimised 

model's evaluation and predicted values for new project parameters. 

4.2 MODEL PERFORMANCE AND PREDICTION OUTCOMES 

In the initial model selection phase, the Random Forest Regressor consistently 

outperformed the other models, namely Support Vector Regressor and Gradient Boosting 

Regressor, by exhibiting lower error rates and providing more accurate fuel cost 

predictions. As shown in Table 2, the SVR performed poorly, displaying significantly 

higher errors and a negative R-squared value, indicating its unsuitability for this specific 

prediction task. 

The strengths of the RFR are particularly well-suited to the complexities of construction 

cost data. As an ensemble method, RFR builds multiple decision trees and averages their 

outputs. This structure effectively captures complex, non-linear relationships between 

project attributes and fuel cost components, which are characteristic of the dataset used, 

combining both numerical (e.g., contract sum, CIDA indices) and categorical variables 

(e.g., project type, energy source). RFR seamlessly handled these diverse data types 

without requiring extensive data transformations, unlike SVR, which relies heavily on 

kernel manipulation. By aggregating predictions from many individual decision trees 

trained on bootstrapped subsets, RFR provided strong generalization and robustness 

against overfitting, a common concern with highly variable project datasets. Furthermore, 

RFR provided intrinsic feature importance scores, which enhance the model's 

transparency and facilitate insights into which project features most influence fuel cost 

outcomes, proving valuable for construction management practitioners. 

RFR outperformed the other models by exhibiting lower error rates and providing more 

accurate predictions of fuel costs. In contrast, the SVR performed poorly, displaying 

significantly higher errors and a negative R-squared value, indicating that it was 

unsuitable for this specific prediction task. 
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4.2.1 Optimised Model Performance 

After comprehensive hyperparameter tuning on the selected RFR and iterative 

optimisation, the model's performance improved significantly.  

Table 4 illustrates the progressive performance enhancement achieved across different 

optimisation stages (R3 to R8) for the selected project. 

Model R7 demonstrated the highest analytical performance, as evidenced by the lowest 

Mean Absolute Error and Mean Squared Error alongside the highest R-squared (R2 ) 

value. These metrics indicated that R7 offered the most accurate predictions and best 

explained the variance in fuel cost outcomes. In contrast, Model R8, while slightly less 

optimal in terms of MAE and R², excelled in predictive stability. It achieved the lowest 

standard deviation and produced the tightest 90% confidence interval, making its 

predictions highly consistent and reliable across different data partitions. Accordingly, 

R7 was the preferred model for analytical accuracy and variance explanation, while R8 

was more suitable for practical deployment, where consistent and stable prediction 

intervals are essential. Therefore, Model R8 is recommended as the overall best model 

when both predictive accuracy and reliability are prioritized in real-world applications. 

Table 4: Modelled performance improvement 

Model MAE  MSE  R²  Predicted 

% Fuel 

Cost 

90% Confidence 

Interval 

Standard 

Deviation  

R3 0.00779 0.00018 0.64411 3.74% Wide 2.68% 

R4 0.00417 0.00003 0.89626 4.35% Wide 2.57% 

R5 0.00384 0.00005 0.90581 4.14% [0.82%, 7.47%] 2.02% 

R6 0.01036 0.00038 0.44648 4.59% [3.80%, 5.39%] 0.51% 

R7 0.00294 0.00001 0.95506 4.17% [3.50%, 4.51%] 0.30% 

R8 0.00421 0.00002 0.92916 3.58% [3.12%, 4.05%] 0.28% 

Best  R7 R7 R7 R8 R8 R8 

4.3 PREDICTED FUEL COSTS BY PROJECT TYPE 

Once the model was optimised (specifically Model R8 for practical deployment), it was 

applied to predict fuel costs across a range of construction projects. The predicted values 

were based on the key project attributes identified in the feature importance analysis.  

Table 5: Results for Different Project Characteristics presents the expected fuel cost 

percentages for various project types, including commercial, education, industrial, and 

road projects. This table provides a concrete demonstration of the model's ability to 

generate specific fuel cost predictions based on distinct project characteristics. 

Table 5: Results for different project characteristics 

Project 

No. 

Project type Actual 

fuel % 

Predicted 

% of 

Model R7 

90% 

Confidence 

intervals 

Predicted 

% of 

Model R8  

90% 

Confidence 

intervals 

3-06600 Commercial 1.22% 1.33% [1.26%,1.40%] 1.28% [1.08%,1.49%] 

3-06300 Education 0.93% 1.10% [1.03%,1.16%] 0.97% [0.92%,1.02%] 
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Project 

No. 

Project type Actual 

fuel % 

Predicted 

% of 

Model R7 

90% 

Confidence 

intervals 

Predicted 

% of 

Model R8  

90% 

Confidence 

intervals 

3-06900 Education 1.45% 1.51% [1.35%,1.69%] 1.56% [1.37%,1.80%] 

3-04800 Education 1.53% 1.35% [1.21%,1.50%] 1.36% [1.38%,1.99%] 

3-04600 Education 1.42% 1.53% [1.36%,1.66%] 1.42% [1.30%,1.53%] 

3-05800 Industrial 1.37% 1.97% [1.70%,2.24%] 1.72% [1.46%,1.97%] 

3-06200 Industrial 2.32% 2.28% [1.93%,2.63%] 2.11% [1.82%,2.40%] 

4-02200 Road 4.63% 3.71% [3.51%,4.08%] 5.27% [4.47%,6.07%] 

4.4  FEATURE INFLUENCE ON PREDICTION OUTCOMES 

The results from the optimised RFR confirmed the importance of certain features, as 

highlighted previously in the feature importance analysis (refer to Figure 3 and Table 1 

in Methodology). By focusing on these critical features, the model provided more 

accurate and realistic predictions for fuel costs. These findings highlight the model's 

ability to identify significant drivers of fuel consumption, which is essential for data-

driven decision-making in project management. 

4.5 PRACTICAL IMPLICATIONS OF THE FINDINGS 

The findings from this study had several practical applications for budgeting construction 

projects, including: 

• The ability to accurately predict fuel costs based on project characteristics allowed 

for more precise budget planning. This is especially important for projects that are 

fuel intensive, such as road construction. 

• Project could use the predictions to allocate resources more effectively, ensuring 

that fuel consumption is anticipated and accounted for throughout the project 

lifecycle. 

• While the model focused on fuel costs, it was essential to explore adoptability to 

predict other cost elements, such as labour and equipment, thereby enhancing its 

applicability across various aspects of project management. 

Supervised ML approach to predict other complex and often subjectively estimated cost 

elements, such as labour and equipment, thereby enhancing its applicability across 

various aspects of project management. This demonstrates the potential for a broader 

revolution in construction cost estimation from a subjective to a data-driven paradigm. 

5. CONCLUSION 

This study on predicting fuel costs for construction projects using Supervised ML 

techniques successfully demonstrated the possibility of utilising this approach in the 

presence of mutable variables affecting fuel costs. This underscores the potential for 

applying the same approach to other cost elements that often rely on human judgment, 

enabling confident data-driven predictions while overcoming the limitations of subjective 

estimations. The research marks a significant advancement towards enhancing the 

precision and reliability of cost estimations in the construction industry. 
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The historical data generated through the ERP application provided a richly structured 

dataset. This facilitated not merely overall cost prediction but specifically the prediction 

of individual cost elements like fuel, which in turn leads to greater accuracy in predicting 

the overall cost of construction projects.  

The adoption of supervised ML techniques yielded several key benefits: 

• Enabled the efficient processing and analysis of large-scale datasets, revealing 

underlying patterns and interdependencies that are not readily detectable through 

manual techniques 

• Facilitated continuous improvement in predictive performance by learning 

iteratively from historical project data 

• Enhanced the capacity to forecast future costs by incorporating dynamic 

relationships among variables and leveraging temporal trends 

• Exhibited adaptability by updating models with newly available data, allowing for 

timely recalibration in response to shifting market conditions and project-specific 

variations. 

• Reduced reliance on subjective estimations, thereby increasing the objectivity and 

reproducibility of cost forecasts 

This study explicitly addressed key gaps identified in the literature, particularly the 

neglect of broader economic and dynamic variables by incorporating average fuel prices 

and CIDA indices, which improved the model's real-world applicability. Furthermore, by 

focusing on a specific and volatile cost element like fuel, the research provides a concrete 

example of how supervised ML can be applied to granular cost components, addressing 

the previous limited focus in this area. The utilization of a comprehensive feature set 

derived from ERP data also contributes to overcoming the issue of underutilized variables 

in traditional models. 

However, several limitations are associated with the current ML model. The dataset was 

restricted to projects at a single organizational level, which may capture features related 

specifically to that organization. This could potentially affect the model's generalizability 

across different organizations, various geographical regions, or diverse construction 

types. Additionally, while the models included both project-specific and macroeconomic 

attributes, the exclusion of real-time or dynamic project updates may restrict the model's 

responsiveness to changing site conditions during ongoing projects. 

Despite these limitations, while the Random Forest Regressor model after optimization 

demonstrated high predictive accuracy, there are several areas for further research and 

development: 

• Integrating real time fuel consumption data from ongoing projects would provide 

dynamic updates to the model, further improving its accuracy and usefulness. 

• Increasing the size and diversity of the dataset by including more projects, 

especially those with lower fuel consumption, would improve the model’s 

generalizability. 

• Although the RFR performed well, exploring other ML techniques such as 

XGBoost or deep learning models could further enhance prediction capabilities, 

especially for complex cost components like labour or materials. 

In conclusion, the application of supervised ML for cost estimation significantly 

enhanced the accuracy, consistency, and strategic utility of construction budgeting. This 
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approach not only supported informed decision-making, risk management, and planning 

but also offered a scalable framework for broader adoption across diverse cost elements. 

By harnessing both historical and current project data, ML-driven cost prediction 

frameworks have the potential to transform traditional cost estimation practices and 

improve overall project management efficiency within the construction sector. 
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